Limits, Continuity and Differentiability · Mathematics · MHT CET

Start Practice

MCQ (Single Correct Answer)

1

$$\lim _\limits{y \rightarrow 0} \frac{\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}}{y^4}=$$

MHT CET 2024 16th May Evening Shift
2

If the function $f$ defined on $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ by

$$f(x)=\left\{\begin{array}{cc} \frac{\sqrt{2} \cos x-1}{\cot x-1}, & x \neq \frac{\pi}{4} \\ k \quad, & x=\frac{\pi}{4} \end{array}\right.$$

is continuous, then k is equal to

MHT CET 2024 16th May Evening Shift
3

The value of $\lim _\limits{x \rightarrow 0}\left((\sin x)^{\frac{1}{x}}+\left(\frac{1}{x}\right)^{\sin x}\right)$, where $x>0$ is

MHT CET 2024 16th May Morning Shift
4

Let $\mathrm{f}(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left[0, \frac{\pi}{2}\right]$. $f(x)$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is

MHT CET 2024 16th May Morning Shift
5

If the function $f(x)= \begin{cases}-2 \sin x & \text {, if } x \leq \frac{-\pi}{2} \\ A \sin x+B & , \text { if } \frac{-\pi}{2}< x<\frac{\pi}{2} \\ \cos x & , \text { if } x \geq \frac{\pi}{2}\end{cases}$ is continuous everywhere, then the values of $A$ and B are respectively

MHT CET 2024 15th May Evening Shift
6

$$\lim _\limits{x \rightarrow 2} \frac{3^x+3^{3-x}-12}{3^{3-x}-3^{\frac{x}{2}}}=$$

MHT CET 2024 15th May Evening Shift
7

Let $f:[-1,3] \rightarrow \mathbb{R}$ be defined as

$$\left\{\begin{array}{lc} |x|+[x], & -1 \leqslant x<1 \\ x+|x|, & 1 \leqslant x<2 \\ x+[x], & 2 \leqslant x \leqslant 3 \end{array}\right.$$

where $[t]$ denotes the greatest integer function. Then $f$ is discontinuous at

MHT CET 2024 15th May Morning Shift
8

$$\lim _\limits{x \rightarrow \frac{\pi}{2}} \frac{\left(1-\tan \left(\frac{x}{2}\right)\right)(1-\sin x)}{\left(1+\tan \left(\frac{x}{2}\right)\right)(\pi-2 x)^3}$$ is

MHT CET 2024 15th May Morning Shift
9

$\lim _\limits{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^2}$ is

MHT CET 2024 11th May Evening Shift
10

Let $f(x)=\left\{\begin{array}{cc}\frac{1-\cos 4 x}{x^2} & , x<0 \\ a & , x=0 \\ \frac{\sqrt{2}}{\sqrt{16+\sqrt{x-4}}} & , x>0\end{array}\right.$ If $\mathrm{f}(x)$ is continuous at $x=0$, then the value of $a$ is

MHT CET 2024 11th May Evening Shift
11

Let f be twice differentiable function such that $\mathrm{f}^{\prime \prime}(x)=-\mathrm{f}(x), \mathrm{f}^{\prime}(x)=\mathrm{g}(x)$ and $\mathrm{h}(x)=(\mathrm{f}(x))^2+(\mathrm{g}(x))^2$. If $\mathrm{h}(5)=1$, then the value of $h(10)$ is

MHT CET 2024 11th May Evening Shift
12

$$\lim _\limits{x \rightarrow 2}\left(\frac{5^x+5^{3-x}-30}{5^{3-x}-5^{\frac{x}{2}}}\right)=$$

MHT CET 2024 11th May Morning Shift
13

If $f(x)=\left\{\begin{array}{cc}\frac{a}{2}(x-|x|) & , \\ 0, & \text { for } x<0 \\ 0, & \text { for } x=0 \\ b x^2 \sin \left(\frac{1}{x}\right) & \text { for } x>0\end{array}\right.$

is continuous at $x=0$, then

MHT CET 2024 11th May Morning Shift
14

The approximate value of $(3.978)^{\frac{3}{2}}$ is

MHT CET 2024 11th May Morning Shift
15

If $\mathrm{f}(x)=\left(\frac{1+\tan x}{1+\sin x}\right)^{\operatorname{cosec} x}$ is continuous at $x=0$ then $f(0)$ is equal to

MHT CET 2024 10th May Evening Shift
16

$$\lim _\limits{x \rightarrow 0} \frac{9^x-4^x}{x\left(9^x+4^x\right)}=$$

MHT CET 2024 10th May Evening Shift
17

The values of $a$ and $b$, so that the function

$$f(x)= \begin{cases}x+\mathrm{a} \sqrt{2} \sin x & , 0 \leq x \leq \frac{\pi}{4} \\ 2 x \cot x+b & , \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ \mathrm{a} \cos 2 x-\mathrm{b} \sin x & , \frac{\pi}{2}< x \leq \pi\end{cases}$$

is continuous for $0 \leq x \leq \pi$, are respectively given by

MHT CET 2024 10th May Morning Shift
18

The approximate value of $x^3-2 x^2+3 x+2$ at $x=2.01$ is

MHT CET 2024 10th May Morning Shift
19

The approximate value of $(3.978)^{3 / 2}$ is

MHT CET 2024 9th May Evening Shift
20

$$\lim _\limits{x \rightarrow \frac{\pi}{2}} \frac{(1-\sin x)\left(8 x^3-\pi^3\right) \cos x}{(\pi-2 x)^4}$$

MHT CET 2024 9th May Evening Shift
21

Let $\mathrm{f}(x)=x\left[\frac{x}{2}\right]$, for $-10< x<10$, where $[t]$ denotes the greatest integer function. Then the number of points of discontinuity of $f$ is equal to

MHT CET 2024 9th May Evening Shift
22

If $\lim\limits_{x \rightarrow \infty}\left(\frac{x^2+x+1}{x+1}-a x-b\right)=4$ then

MHT CET 2024 9th May Morning Shift
23

Let k be a non-zero real number. If $f(x)=\left\{\begin{array}{cl}\frac{\left(\mathrm{e}^x-1\right)^2}{\sin \left(\frac{x}{k}\right) \log \left(1+\frac{x}{4}\right)} & , x \neq 0 \\ 12 & , x=0\end{array}\right.$ is a continuous function, then the value of $k$ is

MHT CET 2024 9th May Morning Shift
24

If $\mathrm{f}(x)=\frac{x+x^2+x^3+\ldots \ldots \ldots \ldots+x^{\mathrm{n}}-\mathrm{n}}{x-1}$, for $x \neq 1$ is continuous at $x=1$, then $\mathrm{f}(1)=$

MHT CET 2024 4th May Evening Shift
25

If $\lim _\limits{x \rightarrow 1} \frac{x^2-a x+b}{x-1}=7$, then $a+b$ is equal to

MHT CET 2024 4th May Evening Shift
26

If $f(x)=\left(\sin ^4 x+\cos ^4 x\right), 0< x<\frac{\pi}{2}$, then the function has minimum value at $x=$

MHT CET 2024 4th May Evening Shift
27

$\lim _\limits{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}$ has the value

MHT CET 2024 4th May Morning Shift
28

Let $a, b \in(a \neq 0)$. If the function $f$ is defined as

$$f(x)=\left\{\begin{array}{cc} \frac{2 x^2}{\mathrm{a}} & , 0 \leq x<1 \\ \mathrm{a} & , 1 \leq x<\sqrt{2} \\ \frac{2 \mathrm{~b}^2-4 b}{x} & , \sqrt{2} \leq x<\infty \end{array}\right.$$

is continuous in the interval $[0, \infty)$, then an ordered pair $(a, b)$ is

MHT CET 2024 4th May Morning Shift
29

If the function $\mathrm{f}(x)=\left(\frac{5 x-8}{8-3 x}\right)^{\frac{3}{2 x-4}}$ if $x \neq 2$. $=\mathrm{k}$ if $x=2$. is continuous at $x=2$, then $\mathrm{k}=$

MHT CET 2024 3rd May Evening Shift
30

For each $x \in \mathbb{R}$, Let $[x]$ represent greatest integer function, then $\lim _{x \rightarrow 0^{-}} \frac{x([x]+|x|) \sin [x]}{|x|}$ is equal to

MHT CET 2024 3rd May Evening Shift
31

Let $\mathrm{f}(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left[0, \frac{1}{2}\right], \quad \mathrm{f}(x)$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $\mathrm{f}\left(\frac{\pi}{4}\right)$ is

MHT CET 2024 3rd May Morning Shift
32

Let $\alpha(a)$ and $\beta(a)$ be the roots of the equation $$(\sqrt[3]{1+a}-1) x^2+(\sqrt{1+a}-1) x+(\sqrt[6]{1+a}-1)=0$$ where $a>-1$ then $\lim _\limits{a \rightarrow 0^{+}} \alpha(a)$ and $\lim _\limits{a \rightarrow 0^{+}} \beta(a)$ respectively are

MHT CET 2024 3rd May Morning Shift
33

The value of k , for which the function

$$\mathrm{f}(x)= \begin{cases}\left(\frac{4}{5}\right)^{\frac{\ln 4 x}{\tan 5 x}}, & 0< x< \frac{\pi}{2} \\ \mathrm{k}+\frac{2}{5} & , x=\frac{\pi}{2}\end{cases}$$

is continuous at $x=\frac{\pi}{2}$, is

MHT CET 2024 2nd May Evening Shift
34

$\lim _\limits{x \rightarrow 0} \frac{\sin \left(\pi \cos ^2 x\right)}{x^2}$ is equal to

MHT CET 2024 2nd May Evening Shift
35

The value of $\lim _\limits{x \rightarrow 0} \frac{x}{|x|+x^2}$ is

MHT CET 2024 2nd May Morning Shift
36

If $\mathrm{f}(x)=\frac{1+\cos \pi x}{\pi(1-x)^2}$, for $x \neq 1$ is continuous at $x=1$, then $\mathrm{f}(1)$ is equal to

MHT CET 2024 2nd May Morning Shift
37

Let K be the set of all real values of $x$, where the function $\mathrm{f}(x)=\sin |x|-|x|+2(x-\pi) \cos |x|$ is not differentiable. Then the set K is

MHT CET 2024 2nd May Morning Shift
38

The function $\mathrm{f}$ defined on $$\left(-\frac{1}{3}, \frac{1}{3}\right)$$ by $$\mathrm{f}(x)=\left\{\begin{array}{cc} \frac{1}{x} \log \left(\frac{1+3 x}{1-2 x}\right) & , \quad x \neq 0 \\ \mathrm{k} & , \quad x=0 \end{array}\right.$$ is continuous at $$x=0$$, then $$\mathrm{k}$$ is

MHT CET 2023 14th May Evening Shift
39

If $$f(a)=2, f^{\prime}(a)=1, g(a)=-1, g^{\prime}(a)=2$$, then as $$x$$ approaches a, $$\frac{\mathrm{g}(x) \mathrm{f}(\mathrm{a})-\mathrm{g}(\mathrm{a}) \mathrm{f}(x)}{(x-\mathrm{a})}$$ approaches

MHT CET 2023 14th May Evening Shift
40

Let $$\mathrm{f}(x)=5-|x-2|$$ and $$\mathrm{g}(x)=|x+1|, x \in \mathrm{R}$$ If $$\mathrm{f}(x)$$ attains maximum value at $$\alpha$$ and $$\mathrm{g}(x)$$ attains minimum value at $$\beta$$, then $$\lim _\limits{x \rightarrow-\alpha \beta} \frac{(x-1)\left(x^2-5 x+6\right)}{x^2-6 x+8}$$ is equal to

MHT CET 2023 14th May Evening Shift
41

$$\lim _\limits{x \rightarrow \infty} x^3\left\{\sqrt{x^2+\sqrt{1+x^4}}-x \sqrt{2}\right\}=$$

MHT CET 2023 14th May Morning Shift
42

$$\lim _\limits{x \rightarrow 0} \frac{\sqrt{1+x \sin x}-\sqrt{\cos x}}{\tan ^2 \frac{x}{2}}=$$

MHT CET 2023 13th May Evening Shift
43

If $$f(x)$$ is continuous on its domain $$[-2,2]$$, where

$$f(x)=\left\{\begin{array}{cc} \frac{\sin a x}{x}+3 & , \text { for }-2 \leq x<0 \\ 2 x+7 & , \text { for } 0 \leq x \leq 1 \\ \sqrt{x^2+8}-b & , \text { for } 1< x \leq 2 \end{array}\right.$$ $$\text { then the value of } 2 a+3 b \text { is }$$

MHT CET 2023 13th May Evening Shift
44

The function $$\mathrm{f}(\mathrm{t})=\frac{1}{\mathrm{t}^2+\mathrm{t}-2}$$ where $$\mathrm{t}=\frac{1}{x-1}$$ is discontinuous at

MHT CET 2023 13th May Morning Shift
45

If $$\mathrm{f}(x)=3 x^{10}-7 x^8+5 x^6-21 x^3+3 x^2-7$$, then $$\lim _\limits{\alpha \rightarrow 0} \frac{f(1-\alpha)-f(1)}{\alpha^3+3 \alpha}=$$

MHT CET 2023 13th May Morning Shift
46

$$\lim _\limits{x \rightarrow 0} \frac{x \cot 4 x}{\sin ^2 x \cdot \cot ^2(2 x)} \text { is equal to }$$

MHT CET 2023 12th May Evening Shift
47

Given $$\mathrm{f}(x)=\left\{\begin{array}{cc}\frac{1-\cos 4 x}{x^2} & , \text { if } x<0 \\ \mathrm{a} & , \text { if } x=0 \\ \frac{\sqrt{x}}{\sqrt{16-\sqrt{x}-4}}, & \text { if } x>0\end{array}\right.$$

If $$\mathrm{f}(x)$$ is continuous at $$x=0$$, then value of a is

MHT CET 2023 12th May Evening Shift
48

The values of $$a$$ and $$b$$, so that the function

$$f(x)=\left\{\begin{array}{l} x+a \sqrt{2} \sin x, 0 \leq x \leq \frac{\pi}{4} \\ 2 x \cot x+b, \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ a \cos 2 x-b \sin x, \frac{\pi}{2} < x \leq \pi \end{array}\right.$$

is continuous for $$0 \leq x \leq \pi$$, are respectively given by

MHT CET 2023 12th May Morning Shift
49

$$\lim _\limits{x \rightarrow 0} \frac{\cos 7 x^{\circ}-\cos 2 x^{\circ}}{x^2}$$ is

MHT CET 2023 12th May Morning Shift
50

$$\text { If } l=\lim _\limits{x \rightarrow 0} \frac{x}{|x|+x^2} \text {, then the value of } l \text { is }$$

MHT CET 2023 11th May Evening Shift
51

If $$\mathrm{f}(x)=\left\{\begin{array}{cc}\frac{x-3}{|x-3|}+\mathrm{a} & , \quad x < 3 \\ \mathrm{a}+\mathrm{b} & , \quad x=3 \\ \frac{|x-3|}{x-3}+\mathrm{b}, & x>3\end{array}\right.$$

Is continuous at $$x=3$$, then the value of $$\mathrm{a}-\mathrm{b}$$ is

MHT CET 2023 11th May Evening Shift
52

$$\lim _\limits{x \rightarrow 2}\left[\frac{1}{x-2}-\frac{2}{x^3-3 x^2+2 x}\right]$$ is equal to

MHT CET 2023 11th May Morning Shift
53

The left-hand derivative of $$\mathrm{f}(x)=[x] \sin (\pi x)$$, at $$x=\mathrm{k}, \mathrm{k}$$ is an integer and [.] is the greatest integer function, is

MHT CET 2023 11th May Morning Shift
54

If $$\mathrm{f}(x)=\left\{\begin{array}{ll}\frac{\sqrt{1+\mathrm{m} x}-\sqrt{1-\mathrm{m} x}}{x}, & -1 \leq x < 0 \\ \frac{2 x+1}{x-2} & , 0 \leq x \leq 1\end{array}\right.$$ is continuous in the interval $$[-1,1]$$, then $$\mathrm{m}$$ is equal to

MHT CET 2023 11th May Morning Shift
55

Let $$\mathrm{S}=\left\{\mathrm{t} \in \mathrm{R} / \mathrm{f}(x)=|x-\pi|\left(\mathrm{e}^{|x|}-1\right) \sin |x|\right.$$ is not differentiable at $$\mathrm{t}\}$$, then $$\mathrm{S}$$ is

MHT CET 2023 10th May Evening Shift
56

If $$\mathrm{f}(x)=\frac{4}{x^4}\left[1-\cos \frac{x}{2}-\cos \frac{x}{4}+\cos \frac{x}{2} \cdot \cos \frac{x}{4}\right]$$ is continuous at $$x=0$$, then $$\mathrm{f}(0)$$ is

MHT CET 2023 10th May Evening Shift
57

$$\lim _\limits{x \rightarrow a} \frac{\sqrt{a+2 x}-\sqrt{3 x}}{\sqrt{3 a+x}-2 \sqrt{x}}=$$

MHT CET 2023 10th May Evening Shift
58

The value of $$\lim _\limits{x \rightarrow a} \frac{\sqrt{a+2 x}-\sqrt{3 x}}{\sqrt{3 a+x}-2 \sqrt{x}}$$ is

MHT CET 2023 10th May Morning Shift
59

If the function $$\mathrm{f}(x)$$ is continuous in $$0 \leq x \leq \pi$$, then the value of $$2 a+3 b$$ is where

$$f(x)= \begin{cases}x+a \sqrt{2} \sin x & \text { if } 0 \leq x < \frac{\pi}{4} \\ 2 x \cot x+b & \text { if } \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ \operatorname{acos} 2 x-b \sin x & \text { if } \frac{\pi}{2} < x \leq \pi\end{cases}$$

MHT CET 2023 10th May Morning Shift
60

$$\lim _\limits{x \rightarrow 0} \frac{(1-\cos 2 x) \cdot \sin 5 x}{x^2 \sin 3 x}$$ is

MHT CET 2023 9th May Evening Shift
61

$$f(x)=\left\{\begin{array}{ll} \frac{1-\cos k x}{x^2}, & \text { if } x \leq 0 \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, & \text { if } x>0 \end{array}\right. \text { is continuous at }$$ $$x=0$$, then the value of $$\mathrm{k}$$ is

MHT CET 2023 9th May Evening Shift
62

$$\lim _\limits{x \rightarrow \frac{\pi}{2}} \frac{\cot x-\cos x}{(\pi-2 x)^3}$$ equals

MHT CET 2023 9th May Morning Shift
63

$$\matrix{ {f(x) = a{x^2} + bx + 1,} & {if} & {\left| {2x - 3} \right| \ge 2} \cr { = 3x + 2,} & {if} & {{1 \over 2} < x < {5 \over 2}} \cr } $$

is continuous on its domain, then $$a+b$$ has the value

MHT CET 2022 11th August Evening Shift
64

If $$\lim _\limits{x \rightarrow 1} \frac{x^2-a x+b}{(x-1)}=5$$, then $$(a+b)$$ is equal to

MHT CET 2022 11th August Evening Shift
65

$$\lim _\limits{x \rightarrow 0} \frac{\sqrt{1-\cos x^2}}{1-\cos x}=$$

MHT CET 2021 24th September Evening Shift
66

If $$\mathrm{f}(\mathrm{x})=\mathrm{x}, \quad$$ for $$\mathrm{x} \leq 0$$

$$=0,\quad$$ for $$x>0$$, then the function $$f(x)$$ at $$x=0$$ is

MHT CET 2021 24th September Evening Shift
67

$$\lim _\limits{x \rightarrow 1} \frac{a b^x-a^x b}{x^2-1}=$$

MHT CET 2021 24th September Morning Shift
68

If the function

$$\begin{array}{rlrl} f(x) & =3 a x+b, & & \text { for } x<1 \\ & =11, & & \text { for } x=1 \\ & =5 a x-2 b, & \text { for } x>1 \end{array}$$

is continuous at $$x=1$$. Then, the values of $$a$$ and $$b$$ are

MHT CET 2021 24th September Morning Shift
69

$$\begin{aligned} & \text { If the function given by} \mathrm{f}(\mathrm{x}) \\ & =-2 \sin \mathrm{x} \quad-\pi \leq \mathrm{x}<-(\pi / 2) \\ & =a \sin x+b \quad-(\pi / 2)< x<(\pi / 2) \\ & =\cos x \quad(\pi / 2) \leq x \leq \pi \\ \end{aligned}$$

is continuous in $$[-\pi, \pi]$$, then the value of $$(3 a+2 b)^3$$ is

MHT CET 2021 23rd September Evening Shift
70

If $$f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}$$, for $$x \neq \pi$$ is continuous at $$x=\pi$$, then the value of $$f(\pi)$$ is

MHT CET 2021 23th September Morning Shift
71

$$\lim _\limits{x \rightarrow 1}\left[\frac{\sqrt{x}-1}{\log x}\right]=$$

MHT CET 2021 23th September Morning Shift
72

Let

$$\begin{aligned} f(x) & =x+a \sqrt{2} \sin x & & , 0 \leq x<\frac{\pi}{4} \\ & =2 x \cot x+b & & \frac{\pi}{4} \leq x<\frac{\pi}{2} \\ & =a \cos 2 x-b \sin x & & \frac{\pi}{2} \leq x \leq \pi \end{aligned}$$

If $$\mathrm{f}(\mathrm{x})$$ is continuous for $$0 \leq \mathrm{x} \leq \pi$$, then

MHT CET 2021 22th September Evening Shift
73

$$\lim _\limits{x \rightarrow 2}(x-1)^{ \frac{1}{3 x-6}}=$$

MHT CET 2021 22th September Evening Shift
74

Let

$$f(x)\matrix{ { = |x| + 3,} & {if\,x \le - 3} \cr { = - 2x,} & {if\, - 3 < x < 3} \cr { = 6x - 2,} & {if\,x \ge 3} \cr } $$, then

MHT CET 2021 22th September Morning Shift
75

$$\lim _\limits{x \rightarrow 0} \frac{\cos (m x)-\cos (n x)}{x^2}=$$

MHT CET 2021 22th September Morning Shift
76

$$\begin{aligned} & \text { } f(x)=\frac{\sqrt{1+p x}-\sqrt{1-p x}}{x} \text {, if } 1 \leq x<0 \\ & =\frac{2 x+1}{x-2} \quad \text {, if } 0 \leq x \leq 1 \\ \end{aligned}$$

is continuous in the interval $$[-1,1]$$, then $$p=$$

MHT CET 2021 21th September Evening Shift
77

If $$\lim _\limits{x \rightarrow 5} \frac{x^k-5^k}{x-5}=500$$, then the value of $$k$$, where $$k \in N$$ is

MHT CET 2021 21th September Evening Shift
78

$$\begin{aligned} & \text { If the function } \mathrm{f}(\mathrm{x})=1+\sin \frac{\pi}{2}, \quad-\infty<\mathrm{x} \leq 1 \\ & =\mathrm{ax}+\mathrm{b}, \quad 1<\mathrm{x}<3 \\ & =6 \tan \frac{x \pi}{12}, \quad 3 \leq x<6 \\ \end{aligned}$$

is continuous in $$(-\infty, 6)$$, then the values of $$\mathrm{a}$$ and $$\mathrm{b}$$ are respectively.

MHT CET 2021 21th September Morning Shift
79

$$\lim _\limits{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^2+x-3}=$$

MHT CET 2021 21th September Morning Shift
80

If $$a=\lim _\limits{n \rightarrow \infty} \frac{1+2+3+\ldots+n}{n^2}$$ and $$b=\lim _\limits{n \rightarrow \infty} \frac{1^2+2^2+3^2+\ldots+n^2}{n^3}$$, then

MHT CET 2021 20th September Evening Shift
81

If $$f(x) = {{{4^{x - \pi }} + {4^{x - \pi }} - 2} \over {{{(x - \pi )}^2}}}$$, for $$x \ne \pi $$, is continuous at $$x=\pi$$, then k =

MHT CET 2021 20th September Evening Shift
82

$$\mathop {\lim }\limits_{x \to \infty } \left( {\sqrt {{x^2} + 5x - 7} - x} \right) = $$

MHT CET 2021 20th September Morning Shift
83

If f(x) = |x|, for x $$\in$$ ($$-1,2$$), then f is discontinuous at (where [x] represents floor function)

MHT CET 2021 20th September Morning Shift
84

If $f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}$, for $x \neq \pi$ is continuous at $x=\pi$, then $f(\pi)=$

MHT CET 2020 19th October Evening Shift
85

If $$f(x)=\frac{|x|}{x}$$, for $$x \neq 0$$ $$=1$$, for $$x=0$$, then tre function is

MHT CET 2020 16th October Evening Shift
86

The function $$f(x)=\frac{x+1}{9 x+x^3}$$ is

MHT CET 2020 16th October Evening Shift
87

The points of discontinuity of the function

$$\begin{aligned} f(x) & =\frac{1}{x-1}, \text { if } 0 \leq x \leq 2 \\ & =\frac{x+5}{x+3} \text { if } 2< x \leq 4 \end{aligned}$$

in its domain are

MHT CET 2020 16th October Morning Shift
88

If $f(x)$ is continuous at $x=3$, where

$$\begin{aligned} f(x) & =a x+1, & \text { for } x \leq 3 \\ & =b x+3 & , \text { for } x>3 \text { then } \end{aligned}$$

MHT CET 2019 3rd May Morning Shift
89

$$\begin{aligned} & \text { If } f(x)=\left[\tan \left(\frac{\pi}{4}+x\right)\right]^{\frac{1}{x}}, \quad x \neq 0 \\ & =k \text {, } \qquad x=0 \text { is continuous }\\ & x=0 \end{aligned}$$ Then $k=$

MHT CET 2019 3rd May Morning Shift
90

If the function $f(x)=\frac{\left(e^{k x}-1\right) \tan k x}{4 x^2}, x \neq 0$

$$\qquad \qquad=16 \qquad x=0$$

is continuous at $x=0$, then $k=\ldots \ldots$

MHT CET 2019 2nd May Evening Shift
91

If $f(x)=[x]$, where $[x]$ is the greatest integer not greater than $x$, then $f^{\prime}\left(1^{+}\right)=$ ...........

MHT CET 2019 2nd May Evening Shift
92

If function

$$\begin{aligned} f(x) & =x-\frac{|x|}{x}, x<0 \\ & =x+\frac{|x|}{x}, x>0 \\ & =1, \quad x=0, \text { then } \end{aligned}$$

MHT CET 2019 2nd May Evening Shift
93

Which of the following function is not continuous at $x=0$ ?

MHT CET 2019 2nd May Morning Shift
94

If the function $f(x)=\frac{\log (1+a x)-\log (1-b x)}{x}$ $x \neq 0$ is continuous at $x=0$ then, $f(0)=\ldots \ldots$

MHT CET 2019 2nd May Morning Shift
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12