1

IIT-JEE 2003

Subjective

+2

-0

Prove that there exists no complex number z such that $$\left| z \right| < {1 \over 3}\,and\,\sum\limits_{r = 1}^n {{a_r}{z^r}} = 1$$ where $$\left| {{a_r}} \right| < 2$$.

2

IIT-JEE 2002

Subjective

+5

-0

Let a complex number $$\alpha ,\,\alpha \ne 1$$, be a root of the equation $${z^{p + q}} - {z^p} - {z^q} + 1 = 0$$, where p, q are distinct primes. Show that either $$1 + \alpha + {\alpha ^2} + .... + {\alpha ^{p - 1}} = 0\,or\,1 + \alpha + {\alpha ^2} + .... + {\alpha ^{q - 1}} = 0$$, but not both together.

3

IIT-JEE 1999

Subjective

+10

-0

For complex numbers z and w, prove that $${\left| z \right|^2}w - {\left| w \right|^2}z = z - w$$ if and only if $$ z = w\,or\,z\overline {\,w} = 1$$.

4

IIT-JEE 1997

Subjective

+5

-0

Let $${z_1}$$ and $${z_2}$$ be roots of the equation $${z^2} + pz + q = 0\,$$ , where the coefficients p and q may be complex numbers. Let A and B represent $${z_1}$$ and $${z_2}$$ in the complex plane. If $$\angle AOB = \alpha \ne 0\,$$ and OA = OB, where O is the origin, prove that $${p^2} = 4q\,{\cos ^2}\left( {{\alpha \over 2}} \right)$$.

Questions Asked from Complex Numbers (Subjective)

Number in Brackets after Paper Indicates No. of Questions

JEE Advanced Subjects

Physics

Mechanics

Units & Measurements
Motion
Laws of Motion
Work Power & Energy
Impulse & Momentum
Rotational Motion
Properties of Matter
Heat and Thermodynamics
Simple Harmonic Motion
Waves
Gravitation

Electricity

Optics

Modern Physics

Chemistry

Physical Chemistry

Some Basic Concepts of Chemistry
Structure of Atom
Redox Reactions
Gaseous State
Equilibrium
Solutions
States of Matter
Thermodynamics
Chemical Kinetics and Nuclear Chemistry
Electrochemistry
Solid State & Surface Chemistry

Inorganic Chemistry

Periodic Table & Periodicity
Chemical Bonding & Molecular Structure
Isolation of Elements
Hydrogen
s-Block Elements
p-Block Elements
d and f Block Elements
Coordination Compounds
Salt Analysis

Organic Chemistry

Mathematics

Algebra

Quadratic Equation and Inequalities
Sequences and Series
Mathematical Induction and Binomial Theorem
Matrices and Determinants
Permutations and Combinations
Probability
Vector Algebra and 3D Geometry
Complex Numbers

Trigonometry

Coordinate Geometry

Calculus