1
IIT-JEE 2003
Subjective
+2
-0
Prove that there exists no complex number z such that $$\left| z \right| < {1 \over 3}\,and\,\sum\limits_{r = 1}^n {{a_r}{z^r}} = 1$$ where $$\left| {{a_r}} \right| < 2$$.
2
IIT-JEE 2002
Subjective
+5
-0
Let a complex number $$\alpha ,\,\alpha \ne 1$$, be a root of the equation $${z^{p + q}} - {z^p} - {z^q} + 1 = 0$$, where p, q are distinct primes. Show that either $$1 + \alpha + {\alpha ^2} + .... + {\alpha ^{p - 1}} = 0\,or\,1 + \alpha + {\alpha ^2} + .... + {\alpha ^{q - 1}} = 0$$, but not both together.
3
IIT-JEE 1999
Subjective
+10
-0
For complex numbers z and w, prove that $${\left| z \right|^2}w - {\left| w \right|^2}z = z - w$$ if and only if $$ z = w\,or\,z\overline {\,w} = 1$$.
4
IIT-JEE 1997
Subjective
+5
-0
Let $${z_1}$$ and $${z_2}$$ be roots of the equation $${z^2} + pz + q = 0\,$$ , where the coefficients p and q may be complex numbers. Let A and B represent $${z_1}$$ and $${z_2}$$ in the complex plane. If $$\angle AOB = \alpha \ne 0\,$$ and OA = OB, where O is the origin, prove that $${p^2} = 4q\,{\cos ^2}\left( {{\alpha \over 2}} \right)$$.
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12