NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

IIT-JEE 2004

Subjective
Find the centre and radius of circle given by $$\,\left| {{{z - \alpha } \over {z - \beta }}} \right| = k,k \ne 1\,$$

where, $${\rm{z = x + iy, }}\alpha {\rm{ = }}\,{\alpha _1}{\rm{ + i}}{\alpha _2}{\rm{,}}\,\beta = {\beta _1}{\rm{ + i}}{\beta _2}{\rm{ }}$$

Answer

$$Centre = {{\alpha - {k^2}\beta } \over {1 - {k^2}}},radius = {k \over {\left| {1 - {k^2}} \right|}}\left| {\alpha - \beta } \right|$$
2

IIT-JEE 2003

Subjective
Prove that there exists no complex number z such that $$\left| z \right| < {1 \over 3}\,and\,\sum\limits_{r = 1}^n {{a_r}{z^r}} = 1$$ where $$\left| {{a_r}} \right| < 2$$.

Answer

solve it.
3

IIT-JEE 2003

Subjective
If $${z_1}$$ and $${z_2}$$ are two complex numbers such that $$\,\left| {{z_1}} \right| < 1 < \left| {{z_2}} \right|\,$$ then prove that $$\,\left| {{{1 - {z_1}\overline {{z_2}} } \over {{z_1} - {z_2}}}} \right| < 1$$.

Answer

solve it.
4

IIT-JEE 2002

Subjective
Let a complex number $$\alpha ,\,\alpha \ne 1$$, be a root of the equation $${z^{p + q}} - {z^p} - {z^q} + 1 = 0$$, where p, q are distinct primes. Show that either $$1 + \alpha + {\alpha ^2} + .... + {\alpha ^{p - 1}} = 0\,or\,1 + \alpha + {\alpha ^2} + .... + {\alpha ^{q - 1}} = 0$$, but not both together.

Answer

solve it.

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12