1
IIT-JEE 2004
Subjective
+2
-0
Find the centre and radius of circle given by $$\,\left| {{{z - \alpha } \over {z - \beta }}} \right| = k,k \ne 1\,$$

where, $${\rm{z = x + iy, }}\alpha {\rm{ = }}\,{\alpha _1}{\rm{ + i}}{\alpha _2}{\rm{,}}\,\beta = {\beta _1}{\rm{ + i}}{\beta _2}{\rm{ }}$$

2
IIT-JEE 2003
Subjective
+2
-0
If $${z_1}$$ and $${z_2}$$ are two complex numbers such that $$\,\left| {{z_1}} \right| < 1 < \left| {{z_2}} \right|\,$$ then prove that $$\,\left| {{{1 - {z_1}\overline {{z_2}} } \over {{z_1} - {z_2}}}} \right| < 1$$.
3
IIT-JEE 2003
Subjective
+2
-0
Prove that there exists no complex number z such that $$\left| z \right| < {1 \over 3}\,and\,\sum\limits_{r = 1}^n {{a_r}{z^r}} = 1$$ where $$\left| {{a_r}} \right| < 2$$.
4
IIT-JEE 2002
Subjective
+5
-0
Let a complex number $$\alpha ,\,\alpha \ne 1$$, be a root of the equation $${z^{p + q}} - {z^p} - {z^q} + 1 = 0$$, where p, q are distinct primes. Show that either $$1 + \alpha + {\alpha ^2} + .... + {\alpha ^{p - 1}} = 0\,or\,1 + \alpha + {\alpha ^2} + .... + {\alpha ^{q - 1}} = 0$$, but not both together.
JEE Advanced Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSAT
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN