1
IIT-JEE 1990
Subjective
+4
-0
Prove that for any positive integer $$k$$,
$${{\sin 2kx} \over {\sin x}} = 2\left[ {\cos x + \cos 3x + ......... + \cos \left( {2k - 1} \right)x} \right]$$
Hence prove that $$\int\limits_0^{\pi /2} {\sin 2kx\,\cot \,x\,dx = {\pi \over 2}}$$
2
IIT-JEE 1990
Subjective
+4
-0
Show that $$\int\limits_0^{\pi /2} {f\left( {\sin 2x} \right)\sin x\,dx = \sqrt 2 } \int\limits_0^{\pi /4} {f\left( {\cos 2x} \right)\cos x\,dx}$$
3
IIT-JEE 1990
Subjective
+4
-0
Compute the area of the region bounded by the curves $$\,y = ex\,\ln x$$ and $$y = {{\ln x} \over {ex}}$$ where $$ln$$ $$e=1.$$
4
IIT-JEE 1989
Subjective
+4
-0
If $$f$$ and $$g$$ are continuous function on $$\left[ {0,a} \right]$$ satisfying
$$f\left( x \right) = f\left( {a - x} \right)$$ and $$g\left( x \right) + g\left( {a - x} \right) = 2,$$
then show that $$\int\limits_0^a {f\left( x \right)g\left( x \right)dx = \int\limits_0^a {f\left( x \right)dx} }$$
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination