1
IIT-JEE 2003
Subjective
+2
-0
If $$f$$ is an even function then prove that
$$\int\limits_0^{\pi /2} {f\left( {\cos 2x} \right)\cos x\,dx = \sqrt 2 } \int\limits_0^{\pi /4} {f\left( {\sin 2x} \right)\cos x\,dx.} $$
2
IIT-JEE 2000
Subjective
+5
-0
For $$x>0,$$ let $$f\left( x \right) = \int\limits_e^x {{{\ln t} \over {1 + t}}dt.} $$ Find the function
$$f\left( x \right) + f\left( {{1 \over x}} \right)$$ and show that $$f\left( e \right) + f\left( {{1 \over e}} \right) = {1 \over 2}.$$
Here, $$\ln t = {\log _e}t$$.
3
IIT-JEE 1999
Subjective
+5
-0
Integrate $$\int\limits_0^\pi {{{{e^{\cos x}}} \over {{e^{\cos x}} + {e^{ - \cos x}}}}\,dx.} $$
4
IIT-JEE 1998
Subjective
+8
-0
Prove that $$\int_0^1 {{{\tan }^{ - 1}}} \,\left( {{1 \over {1 - x + {x^2}}}} \right)dx = 2\int_0^1 {{{\tan }^{ - 1}}} \,x\,dx.$$
Hence or otherwise, evaluate the integral
$$\int_0^1 {{{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx.} $$
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12