1
IIT-JEE 2000
Subjective
+5
-0
For $$x>0,$$ let $$f\left( x \right) = \int\limits_e^x {{{\ln t} \over {1 + t}}dt.} $$ Find the function
$$f\left( x \right) + f\left( {{1 \over x}} \right)$$ and show that $$f\left( e \right) + f\left( {{1 \over e}} \right) = {1 \over 2}.$$
Here, $$\ln t = {\log _e}t$$.
2
IIT-JEE 1999
Subjective
+5
-0
Integrate $$\int\limits_0^\pi {{{{e^{\cos x}}} \over {{e^{\cos x}} + {e^{ - \cos x}}}}\,dx.} $$
3
IIT-JEE 1998
Subjective
+8
-0
Prove that $$\int_0^1 {{{\tan }^{ - 1}}} \,\left( {{1 \over {1 - x + {x^2}}}} \right)dx = 2\int_0^1 {{{\tan }^{ - 1}}} \,x\,dx.$$
Hence or otherwise, evaluate the integral
$$\int_0^1 {{{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx.} $$
4
IIT-JEE 1997
Subjective
+5
-0
Determine the value of $$\int_\pi ^\pi {{{2x\left( {1 + \sin x} \right)} \over {1 + {{\cos }^2}x}}} \,dx.$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12