1
JEE Advanced 2024 Paper 2 Online
Numerical
+4
-0
Change Language

Let the function $f:[1, \infty) \rightarrow \mathbb{R}$ be defined by

$$ f(t)=\left\{\begin{array}{cc} (-1)^{n+1} 2, & \text { if } t=2 n-1, n \in \mathbb{N}, \\ \frac{(2 n+1-t)}{2} f(2 n-1)+\frac{(t-(2 n-1))}{2} f(2 n+1), & \text { if } 2 n-1 < t < 2 n+1, n \in \mathbb{N} . \end{array}\right. $$

Define $g(x)=\int_1^x f(t) d t, x \in(1, \infty)$. Let $\alpha$ denote the number of solutions of the equation $g(x)=0$ in the interval $(1,8]$ and $\beta=\lim \limits_{x \rightarrow l+} \frac{g(x)}{x-1}$.

Then the value of $\alpha+\beta$ is equal to _______.

Your input ____
2
JEE Advanced 2023 Paper 1 Online
Numerical
+4
-0
Change Language
Let $n \geq 2$ be a natural number and $f:[0,1] \rightarrow \mathbb{R}$ be the function defined by

$$ f(x)= \begin{cases}n(1-2 n x) & \text { if } 0 \leq x \leq \frac{1}{2 n} \\\\ 2 n(2 n x-1) & \text { if } \frac{1}{2 n} \leq x \leq \frac{3}{4 n} \\\\ 4 n(1-n x) & \text { if } \frac{3}{4 n} \leq x \leq \frac{1}{n} \\\\ \frac{n}{n-1}(n x-1) & \text { if } \frac{1}{n} \leq x \leq 1\end{cases} $$

If $n$ is such that the area of the region bounded by the curves $x=0, x=1, y=0$ and $y=f(x)$ is 4 , then the maximum value of the function $f$ is :
Your input ____
3
JEE Advanced 2022 Paper 2 Online
Numerical
+3
-1
Change Language
Consider the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$ f(x)=x^{2}+\frac{5}{12} \quad \text { and } \quad g(x)= \begin{cases}2\left(1-\frac{4|x|}{3}\right), & |x| \leq \frac{3}{4} \\ 0, & |x|>\frac{3}{4}\end{cases} $$

If $\alpha$ is the area of the region

$$ \left\{(x, y) \in \mathbb{R} \times \mathbb{R}:|x| \leq \frac{3}{4}, 0 \leq y \leq \min \{f(x), g(x)\}\right\}, $$

then the value of $9 \alpha$ is
Your input ____
4
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Change Language
Let f1 : (0, $$\infty$$) $$\to$$ R and f2 : (0, $$\infty$$) $$\to$$ R be defined by $${f_1}(x) = \int\limits_0^x {\prod\limits_{j = 1}^{21} {{{(t - j)}^j}dt} } $$, x > 0 and $${f_2}(x) = 98{(x - 1)^{50}} - 600{(x - 1)^{49}} + 2450,x > 0$$, where, for any positive integer n and real numbers a1, a2, ....., an, $$\prod\nolimits_{i = 1}^n {{a_i}} $$ denotes the product of a1, a2, ....., an. Let mi and ni, respectively, denote the number of points of local minima and the number of points of local maxima of function fi, i = 1, 2 in the interval (0, $$\infty$$).

The value of $$2{m_1} + 3{n_1} + {m_1}{n_1}$$ is ___________.
Your input ____
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12