1
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Let f1 : (0, $$\infty$$) $$\to$$ R and f2 : (0, $$\infty$$) $$\to$$ R be defined by $${f_1}(x) = \int\limits_0^x {\prod\limits_{j = 1}^{21} {{{(t - j)}^j}dt} } $$, x > 0 and $${f_2}(x) = 98{(x - 1)^{50}} - 600{(x - 1)^{49}} + 2450,x > 0$$, where, for any positive integer n and real numbers a1, a2, ....., an, $$\prod\nolimits_{i = 1}^n {{a_i}} $$ denotes the product of a1, a2, ....., an. Let mi and ni, respectively, denote the number of points of local minima and the number of points of local maxima of function fi, i = 1, 2 in the interval (0, $$\infty$$).
The value of $$2{m_1} + 3{n_1} + {m_1}{n_1}$$ is ___________.
The value of $$2{m_1} + 3{n_1} + {m_1}{n_1}$$ is ___________.
Your input ____
2
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Let f1 : (0, $$\infty$$) $$\to$$ R and f2 : (0, $$\infty$$) $$\to$$ R be defined by $${f_1}(x) = \int\limits_0^x {\prod\limits_{j = 1}^{21} {{{(t - j)}^j}dt} } $$, x > 0 and $${f_2}(x) = 98{(x - 1)^{50}} - 600{(x - 1)^{49}} + 2450,x > 0$$, where, for any positive integer n and real numbers a1, a2, ....., an, $$\prod\nolimits_{i = 1}^n {{a_i}} $$ denotes the product of a1, a2, ....., an. Let mi and ni, respectively, denote the number of points of local minima and the number of points of local maxima of function fi, i = 1, 2 in the interval (0, $$\infty$$).
The value of $$6{m_2} + 4{n_2} + 8{m_2}{n_2}$$ is ___________.
The value of $$6{m_2} + 4{n_2} + 8{m_2}{n_2}$$ is ___________.
Your input ____
3
JEE Advanced 2018 Paper 1 Offline
Numerical
+3
-0
A farmer F1 has a land in the shape of a triangle with vertices at P(0, 0), Q(1, 1) and R(2, 0). From this land, a neighbouring farmer F2 takes away the region which lies between the sides PQ and a curve of the form y = xn (n > 1). If the area of the region taken away by the farmer F2 is exactly 30% of the area of $$\Delta $$PQR, then the value of n is .................
Your input ____
4
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
Let $$f:R \to R$$ be a continuous odd function, which vanishes exactly at one point and $$f\left( 1 \right) = {1 \over {2.}}$$ Suppose that $$F\left( x \right) = \int\limits_{ - 1}^x {f\left( t \right)dt} $$ for all $$x \in \,\,\left[ { - 1,2} \right]$$ and $$G(x)=$$ $$\int\limits_{ - 1}^x {t\left| {f\left( {f\left( t \right)} \right)} \right|} dt$$ for all $$x \in \,\,\left[ { - 1,2} \right].$$ If $$\mathop {\lim }\limits_{x \to 1} {{F\left( x \right)} \over {G\left( x \right)}} = {1 \over {14}},$$ then the value of $$f\left( {{1 \over 2}} \right)$$ is
Your input ____
Questions Asked from Application of Integration (Numerical)
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced Subjects
Physics
Mechanics
Units & MeasurementsMotionLaws of MotionWork Power & EnergyImpulse & MomentumRotational MotionProperties of MatterHeat and ThermodynamicsSimple Harmonic MotionWavesGravitation
Electricity
ElectrostaticsCurrent ElectricityCapacitorMagnetismElectromagnetic InductionAlternating CurrentElectromagnetic Waves
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of ChemistryStructure of AtomRedox ReactionsGaseous StateChemical EquilibriumIonic EquilibriumSolutionsThermodynamicsChemical Kinetics and Nuclear ChemistryElectrochemistrySolid StateSurface Chemistry
Inorganic Chemistry
Periodic Table & PeriodicityChemical Bonding & Molecular StructureIsolation of ElementsHydrogens-Block Elementsp-Block Elementsd and f Block ElementsCoordination CompoundsSalt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and InequalitiesSequences and SeriesMathematical Induction and Binomial TheoremMatrices and DeterminantsPermutations and CombinationsProbabilityVector Algebra3D GeometryStatisticsComplex Numbers
Trigonometry
Coordinate Geometry
Calculus