NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Advanced 2015 Paper 2 Offline

Numerical
Let $$f:R \to R$$ be a continuous odd function, which vanishes exactly at one point and $$f\left( 1 \right) = {1 \over {2.}}$$ Suppose that $$F\left( x \right) = \int\limits_{ - 1}^x {f\left( t \right)dt} $$ for all $$x \in \,\,\left[ { - 1,2} \right]$$ and $$G(x)=$$ $$\int\limits_{ - 1}^x {t\left| {f\left( {f\left( t \right)} \right)} \right|} dt$$ for all $$x \in \,\,\left[ { - 1,2} \right].$$ If $$\mathop {\lim }\limits_{x \to 1} {{F\left( x \right)} \over {G\left( x \right)}} = {1 \over {14}},$$ then the value of $$f\left( {{1 \over 2}} \right)$$ is
Your Input ________

Answer

Correct Answer is 7

Explanation

Here, $$\mathop {\lim }\limits_{x \to 1} {{F(x)} \over {G(x)}} = {1 \over {14}}$$

$$ \Rightarrow \mathop {\lim }\limits_{x \to 1} {{F'(x)} \over {G'(x)}} = {1 \over {14}}$$ [using L' Hospital's rule] ....... (i)

As $$F(x) = \int_{ - 1}^x {f(t)dt} $$

$$ \Rightarrow F'(x) = f(x)$$ ...... (ii)

and $$G(x) = \int_{ - 1}^x {t|f\{ f(t)\} |dt} $$

$$ \Rightarrow G'(x) = x|f\{ f(x)\} |$$ ...... (iii)

$$\therefore$$ $$\mathop {\lim }\limits_{x \to 1} {{F(x)} \over {G(x)}} = \mathop {\lim }\limits_{x \to 1} {{F'(x)} \over {G'(x)}} = \mathop {\lim }\limits_{x \to 1} {{f(x)} \over {x|f\{ f(x)\} |}}$$

$$ = {{f(1)} \over {1|f\{ f(1)\} |}} = {{1/2} \over {|f(1/2)|}}$$ ....... (iv)

Given, $$\mathop {\lim }\limits_{x \to 1} {{F(x)} \over {G(x)}} = {1 \over {14}}$$

$$\therefore$$ $${{{1 \over 2}} \over {\left| {f\left( {{1 \over 2}} \right)} \right|}} = {1 \over {14}} \Rightarrow \left| {f\left( {{1 \over 2}} \right)} \right| = 7$$

2

JEE Advanced 2015 Paper 1 Offline

Numerical
Let $$f:R \to R$$ be a function defined by
$$f\left( x \right) = \left\{ {\matrix{ {\left[ x \right],} & {x \le 2} \cr {0,} & {x > 2} \cr } } \right.$$ where $$\left[ x \right]$$ is the greatest integer less than or equal to $$x$$, if $$I = \int\limits_{ - 1}^2 {{{xf\left( {{x^2}} \right)} \over {2 + f\left( {x + 1} \right)}}dx,} $$ then the value of $$(4I-1)$$ is
Your Input ________

Answer

Correct Answer is 0
3

JEE Advanced 2014 Paper 1 Offline

Numerical
The value of $$\int\limits_0^1 {4{x^3}\left\{ {{{{d^2}} \over {d{x^2}}}{{\left( {1 - {x^2}} \right)}^5}} \right\}dx} $$ is
Your Input ________

Answer

Correct Answer is 2
4

IIT-JEE 2010 Paper 1 Offline

Numerical
For any real number $$x,$$ let $$\left[ x \right]$$ denote the largest integer less than or equal to $$x.$$ Let $$f$$ be a real valued function defined on the interval $$\left[ { - 10,10} \right]$$ by $$$f\left( x \right) = \left\{ {\matrix{ {x - \left[ x \right]} & {if\left[ x \right]is\,odd,} \cr {1 + \left[ x \right] - x} & {if\left[ x \right]is\,even} \cr } } \right.$$$

Then the value of $${{{\pi ^2}} \over {10}}\int\limits_{ - 10}^{10} {f\left( x \right)\cos \,\pi x\,dx} $$ is

Your Input ________

Answer

Correct Answer is 4

Explanation

Given,

$$f(x) = \left\{ {\matrix{ {x - [x]} & {if\,[x]\,is\,odd} \cr {1 + [x] - x} & {if\,[x]\,is\,even} \cr } } \right.$$

f(x) and cos $$\theta$$ x both are periodic with period 2 and both are even.

$$\therefore$$ $$\int\limits_{ - 10}^{10} {f(x)\cos \pi x\,dx} $$ $$ = 2\int\limits_0^{10} {f(x)\cos \pi x\,dx} $$

$$ = 10\int\limits_0^2 {f(x)\cos \pi x\,dx} $$

Now, $$\int\limits_0^1 {f(x)\cos \pi x\,dx} $$

$$ = \int\limits_0^1 {(1 - x)\cos \pi x\,dx = - \int\limits_0^1 {u\cos \pi u\,du} } $$ and $$\int\limits_1^2 {f(x)\cos \pi x\,dx} $$

$$ = \int\limits_1^2 {(x - 1)\cos \pi x\,dx = - \int\limits_0^1 {u\cos \pi u\,du} } $$

$$\therefore$$ $$\int\limits_{ - 10}^{10} {f(x)\cos \pi x\,dx} $$

$$ = - 20\int\limits_0^1 {u\cos \pi u\,du = {{40} \over {{\pi ^2}}}} $$

$$ \Rightarrow {{{\pi ^2}} \over {10}}\int\limits_{ - 10}^{10} {f(x)\cos \pi x\,dx = 4} $$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12