1
JEE Advanced 2025 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1

Let S denote the locus of the point of intersection of the pair of lines

$4x - 3y = 12\alpha$,

$4\alpha x + 3\alpha y = 12$,

where $\alpha$ varies over the set of non-zero real numbers. Let T be the tangent to S passing through the points $(p, 0)$ and $(0, q)$, $q > 0$, and parallel to the line $4x - \frac{3}{\sqrt{2}} y = 0$.

Then the value of $pq$ is

A

$-6\sqrt{2}$

B

$-3\sqrt{2}$

C

$-9\sqrt{2}$

D

$-12\sqrt{2}$

2
JEE Advanced 2013 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
For $$a > b > c > 0,$$ the distance between $$(1, 1)$$ and the point of intersection of the lines $$ax + by + c = 0$$ and $$bx + ay + c = 0$$ is less than $$\left( {2\sqrt 2 } \right)$$. Then
A
$$a + b - c > 0$$
B
$$a - b + c < 0$$
C
$$a - b + c = > 0$$
D
$$a + b - c < 0$$
3
IIT-JEE 2011 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
A straight line $$L$$ through the point $$(3, -2)$$ is inclined at an angle $${60^ \circ }$$ to the line $$\sqrt {3x} + y = 1.$$ If $$L$$ also intersects the x-axis, then the equation of $$L$$ is
A
$$y + \sqrt {3x} + 2 - 3\sqrt 3 = 0$$
B
$$y - \sqrt {3x} + 2 + 3\sqrt 3 = 0$$
C
$$\sqrt {3y} - x + 3 + 2\sqrt 3 = 0$$
D
$$\sqrt {3y} + x - 3 + 2\sqrt 3 = 0$$
4
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

Consider three points $$P = ( - \sin (\beta - \alpha ), - cos\beta ),Q = (cos(\beta - \alpha ),\sin \beta )$$ and $$R = (\cos (\beta - \alpha + \theta ),\sin (\beta - \theta ))$$ where $$0 < \alpha ,\beta ,\theta < {\pi \over 4}$$. Then :

A
P lies on the line segment RQ
B
Q lies on the line segment PR
C
R lies on the line segment QP
D
P, Q, R are non-collinear
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12