NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Advanced 2013 Paper 1 Offline

MCQ (Single Correct Answer)
For $$a > b > c > 0,$$ the distance between $$(1, 1)$$ and the point of intersection of the lines $$ax + by + c = 0$$ and $$bx + ay + c = 0$$ is less than $$\left( {2\sqrt 2 } \right)$$. Then
A
$$a + b - c > 0$$
B
$$a - b + c < 0$$
C
$$a - b + c = > 0$$
D
$$a + b - c < 0$$
2

IIT-JEE 2011 Paper 1 Offline

MCQ (Single Correct Answer)
A straight line $$L$$ through the point $$(3, -2)$$ is inclined at an angle $${60^ \circ }$$ to the line $$\sqrt {3x} + y = 1.$$ If $$L$$ also intersects the x-axis, then the equation of $$L$$ is
A
$$y + \sqrt {3x} + 2 - 3\sqrt 3 = 0$$
B
$$y - \sqrt {3x} + 2 + 3\sqrt 3 = 0$$
C
$$\sqrt {3y} - x + 3 + 2\sqrt 3 = 0$$
D
$$\sqrt {3y} + x - 3 + 2\sqrt 3 = 0$$
3

IIT-JEE 2007

MCQ (Single Correct Answer)
The lines $${L_1}:y - x = 0$$ and $${L_2}:2x + y = 0$$ intersect the line $${L_3}:y + 2 = 0$$ at $$P$$ and $$Q$$ respectively. The bisector of the acute angle between $${L_1}$$ and $${L_2}$$ intersects $${L_3}$$ at $$R$$.

Statement-1: The ratio $$PR$$ : $$RQ$$ equals $$2\sqrt 2 :\sqrt 5 $$. because
Statement-2: In any triangle, bisector of an angle divides the triangle into two similar triangles.

A
Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement- 1
B
Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
C
Statement-1 is True, Statement-2 is False.
D
Statement-1 is False, Statement-2 is True.
4

IIT-JEE 2007

MCQ (Single Correct Answer)
Let $$O\left( {0,0} \right),P\left( {3,4} \right),Q\left( {6,0} \right)$$ be the vertices of the triangles $$OPQ$$. The point $$R$$ inside the triangle $$OPQ$$ is such that the triangles $$OPR$$, $$PQR$$, $$OQR$$ are of equal area. The coordinates of $$R$$ are
A
$$\left( {{4 \over 3},3} \right)$$
B
$$\left( {3,{2 \over 3}} \right)$$
C
$$\left( {3,{4 \over 3}} \right)$$
D
$$\left( {{4 \over 3},{2 \over 3}} \right)$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12