1
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1

Consider the lines given by:

$${L_1}:x + 3y - 5 = 0$$

$${L_2}:3x - ky - 1 = 0$$

$${L_3}:5x + 2y - 12 = 0$$

Match the Statement/Expressions in Column I with the Statements/Expressions in Column II.

Column I Column II
(A) L$$_1$$, L$$_2$$, L$$_3$$ are concurrent, if (P) $$K = - 9$$
(B) One of L$$_1$$, L$$_2$$, L$$_3$$ is parallel to atleast one of the other two, if (Q) $$K = - {6 \over 5}$$
(C) L$$_1$$, L$$_2$$, L$$_3$$ form a triangle, if (R) $$K = {5 \over 6}$$
(D) L$$_1$$, L$$_2$$, L$$_3$$ do not form a triangle, if (S) $$K = 5$$

A
A - iv; B - ii; C - iii; D - i, ii
B
A - iv; B - i, ii; C - iii; D - i, ii, iv
C
A - iv; B - i; C - iii; D - i, ii
D
A - ii; B - i, iii; C - iii; D - i, ii, iv
2
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let a and b be non-zero real numbers. Then, the equation

$$(a{x^2} + b{y^2} + c)({x^2} - 5xy + 6{y^2}) = 0$$ represents :

A
four straight lines, when c = 0 and a, b are of the same sign
B
two straight lines and a circle, when a = b, and c is of sign opposite to that of a
C
two straight lines and a hyperbola, when a and b are of the same sign and c is of sign opposite to that of a
D
a circle and an ellipse, when a and b are of the same sign and c is of sign opposite to that of a
3
IIT-JEE 2007
MCQ (Single Correct Answer)
+3
-0.75
Let $$O\left( {0,0} \right),P\left( {3,4} \right),Q\left( {6,0} \right)$$ be the vertices of the triangles $$OPQ$$. The point $$R$$ inside the triangle $$OPQ$$ is such that the triangles $$OPR$$, $$PQR$$, $$OQR$$ are of equal area. The coordinates of $$R$$ are
A
$$\left( {{4 \over 3},3} \right)$$
B
$$\left( {3,{2 \over 3}} \right)$$
C
$$\left( {3,{4 \over 3}} \right)$$
D
$$\left( {{4 \over 3},{2 \over 3}} \right)$$
4
IIT-JEE 2007
MCQ (Single Correct Answer)
+3
-0.75
The lines $${L_1}:y - x = 0$$ and $${L_2}:2x + y = 0$$ intersect the line $${L_3}:y + 2 = 0$$ at $$P$$ and $$Q$$ respectively. The bisector of the acute angle between $${L_1}$$ and $${L_2}$$ intersects $${L_3}$$ at $$R$$.

Statement-1: The ratio $$PR$$ : $$RQ$$ equals $$2\sqrt 2 :\sqrt 5 $$. because
Statement-2: In any triangle, bisector of an angle divides the triangle into two similar triangles.

A
Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement- 1
B
Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
C
Statement-1 is True, Statement-2 is False.
D
Statement-1 is False, Statement-2 is True.
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12