1
IIT-JEE 2011 Paper 2 Offline
+3
-1

If $$\mathop {\lim }\limits_{x \to 0} {[1 + x\ln (1 + {b^2})]^{1/x}} = 2b{\sin ^2}\theta$$, $$b > 0$$ and $$\theta \in ( - \pi ,\pi ]$$, then the value of $$\theta$$ is

A
$$\pm {\pi \over 4}$$
B
$$\pm {\pi \over 3}$$
C
$$\pm {\pi \over 6}$$
D
$$\pm {\pi \over 2}$$
2
IIT-JEE 2008 Paper 2 Offline
+3
-1
Let the function $$g:\left( { - \infty ,\infty } \right) \to \left( { - {\pi \over 2},{\pi \over 2}} \right)$$ be given by

$$g\left( u \right) = 2{\tan ^{ - 1}}\left( {{e^u}} \right) - {\pi \over 2}.$$ Then, $$g$$ is
A
even and is strictly increasing in $$\left( {0,\infty } \right)$$
B
odd and is strictly decreasing in $$\left( { - \infty ,\infty } \right)$$
C
odd and is strictly increasing in $$\left( { - \infty ,\infty } \right)$$
D
neither even nor odd, but is strictly increasing in $$\left( { - \infty ,\infty } \right)$$
3
IIT-JEE 2008 Paper 2 Offline
+3
-1
Consider the function $$f:\left( { - \infty ,\infty } \right) \to \left( { - \infty ,\infty } \right)$$ defined by

$$f\left( x \right) = {{{x^2} - ax + 1} \over {{x^2} + ax + 1}},0 < a < 2.$$

Which of the following is true?

A
$$f(x)$$ is decreasing on $$(-1,1)$$ and has a local minimum at $$x=1$$
B
$$f(x)$$ is increasing on $$(-1,1)$$ and has a local minimum at $$x=1$$
C
$$f(x)$$ is increasing on $$(-1,1)$$ but has neither a local maximum nor a local minimum at $$x=1$$
D
$$f(x)$$ is decreasing on $$(-1,1)$$ but has neither a local maximum nor a local minimum at $$x=1$$
4
IIT-JEE 2008 Paper 1 Offline
+3
-1

Let $$g(x) = {{{{(x - 1)}^n}} \over {\log {{\cos }^m}(x - 1)}};0 < x < 2,m$$ and $$n$$ are integers, $$m \ne 0,n > 0$$, and let $$p$$ be the left hand derivative of $$|x - 1|$$ at $$x = 1$$. If $$\mathop {\lim }\limits_{x \to {1^ + }} g(x) = p$$, then

A
$$n = 1,m = 1$$
B
$$n = 1,m = - 1$$
C
$$n = 2,m = 2$$
D
$$n > 2,m = n$$
EXAM MAP
Medical
NEET