1
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

If $$\mathop {\lim }\limits_{x \to 0} {[1 + x\ln (1 + {b^2})]^{1/x}} = 2b{\sin ^2}\theta $$, $$b > 0$$ and $$\theta \in ( - \pi ,\pi ]$$, then the value of $$\theta$$ is

A
$$ \pm {\pi \over 4}$$
B
$$ \pm {\pi \over 3}$$
C
$$ \pm {\pi \over 6}$$
D
$$ \pm {\pi \over 2}$$
2
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Consider the function $$f:\left( { - \infty ,\infty } \right) \to \left( { - \infty ,\infty } \right)$$ defined by

$$f\left( x \right) = {{{x^2} - ax + 1} \over {{x^2} + ax + 1}},0 < a < 2.$$

Which of the following is true?

A
$$f(x)$$ is decreasing on $$(-1,1)$$ and has a local minimum at $$x=1$$
B
$$f(x)$$ is increasing on $$(-1,1)$$ and has a local minimum at $$x=1$$
C
$$f(x)$$ is increasing on $$(-1,1)$$ but has neither a local maximum nor a local minimum at $$x=1$$
D
$$f(x)$$ is decreasing on $$(-1,1)$$ but has neither a local maximum nor a local minimum at $$x=1$$
3
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let the function $$g:\left( { - \infty ,\infty } \right) \to \left( { - {\pi \over 2},{\pi \over 2}} \right)$$ be given by

$$g\left( u \right) = 2{\tan ^{ - 1}}\left( {{e^u}} \right) - {\pi \over 2}.$$ Then, $$g$$ is
A
even and is strictly increasing in $$\left( {0,\infty } \right)$$
B
odd and is strictly decreasing in $$\left( { - \infty ,\infty } \right)$$
C
odd and is strictly increasing in $$\left( { - \infty ,\infty } \right)$$
D
neither even nor odd, but is strictly increasing in $$\left( { - \infty ,\infty } \right)$$
4
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let $$g(x) = {{{{(x - 1)}^n}} \over {\log {{\cos }^m}(x - 1)}};0 < x < 2,m$$ and $$n$$ are integers, $$m \ne 0,n > 0$$, and let $$p$$ be the left hand derivative of $$|x - 1|$$ at $$x = 1$$. If $$\mathop {\lim }\limits_{x \to {1^ + }} g(x) = p$$, then

A
$$n = 1,m = 1$$
B
$$n = 1,m = - 1$$
C
$$n = 2,m = 2$$
D
$$n > 2,m = n$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12