1
JEE Advanced 2018 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let $${f_1}:R \to R,\,{f_2}:\left( { - {\pi \over 2},{\pi \over 2}} \right) \to R,\,{f_3}:( - 1,{e^{\pi /2}} - 2) \to R$$ and $${f_4}:R \to R$$ be functions defined by
(i) $${f_1}(x) = \sin (\sqrt {1 - {e^{ - {x^2}}}} )$$,
(ii) $${f_2}(x) = \left\{ \matrix{ {{|\sin x|} \over {\tan { - ^1}x}}if\,x \ne 0,\,where \hfill \cr 1\,if\,x = 0 \hfill \cr} \right.$$
the inverse trigonometric function tan$$-$$1x assumes values in $$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$,
(iii) $${f_3}(x) = [\sin ({\log _e}(x + 2))]$$, where for $$t \in R,\,[t]$$ denotes the greatest integer less than or equal to t,
(iv) $${f_4}(x) = \left\{ \matrix{ {x^2}\sin \left( {{1 \over x}} \right)\,if\,x \ne 0 \hfill \cr 0\,if\,x = 0 \hfill \cr} \right.$$
(i) $${f_1}(x) = \sin (\sqrt {1 - {e^{ - {x^2}}}} )$$,
(ii) $${f_2}(x) = \left\{ \matrix{ {{|\sin x|} \over {\tan { - ^1}x}}if\,x \ne 0,\,where \hfill \cr 1\,if\,x = 0 \hfill \cr} \right.$$
the inverse trigonometric function tan$$-$$1x assumes values in $$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$,
(iii) $${f_3}(x) = [\sin ({\log _e}(x + 2))]$$, where for $$t \in R,\,[t]$$ denotes the greatest integer less than or equal to t,
(iv) $${f_4}(x) = \left\{ \matrix{ {x^2}\sin \left( {{1 \over x}} \right)\,if\,x \ne 0 \hfill \cr 0\,if\,x = 0 \hfill \cr} \right.$$
LIST-I | LIST-II |
---|---|
P. The function $$ f_1 $$ is | 1. NOT continuous at $$ x = 0 $$ |
Q. The function $$ f_2 $$ is | 2. continuous at $$ x = 0 $$ and NOT differentiable at $$ x = 0 $$ |
R. The function $$ f_3 $$ is | 3. differentiable at $$ x = 0 $$ and its derivative is NOT continuous at $$ x = 0 $$ |
S. The function $$ f_4 $$ is | 4. differentiable at $$ x = 0 $$ and its derivative is continuous at $$ x = 0 $$ |
2
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
If f : R $$ \to $$ R is a twice differentiable function such that f"(x) > 0 for all x$$ \in $$R, and $$f\left( {{1 \over 2}} \right) = {1 \over 2}$$, f(1) = 1, then
3
IIT-JEE 2012 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
If $$\mathop {\lim }\limits_{x \to \infty } \left( {{{{x^2} + x + 1} \over {x + 1}} - ax - b} \right) = 4$$, then
4
IIT-JEE 2012 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$f(x) = \left\{ {\matrix{ {{x^2}\left| {\cos {\pi \over x}} \right|,} & {x \ne 0} \cr {0,} & {x = 0} \cr } } \right.$$
x$$\in$$R, then f is
Questions Asked from Limits, Continuity and Differentiability (MCQ (Single Correct Answer))
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced 2024 Paper 2 Online (2)
JEE Advanced 2024 Paper 1 Online (1)
JEE Advanced 2022 Paper 2 Online (1)
JEE Advanced 2018 Paper 2 Offline (1)
JEE Advanced 2017 Paper 2 Offline (1)
IIT-JEE 2012 Paper 1 Offline (2)
IIT-JEE 2011 Paper 2 Offline (1)
IIT-JEE 2008 Paper 2 Offline (2)
IIT-JEE 2008 Paper 1 Offline (1)
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements Motion Laws of Motion Work Power & Energy Impulse & Momentum Rotational Motion Properties of Matter Heat and Thermodynamics Simple Harmonic Motion Waves Gravitation
Electricity
Electrostatics Current Electricity Capacitor Magnetism Electromagnetic Induction Alternating Current Electromagnetic Waves
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry Structure of Atom Redox Reactions Gaseous State Chemical Equilibrium Ionic Equilibrium Solutions Thermodynamics Chemical Kinetics and Nuclear Chemistry Electrochemistry Solid State Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity Chemical Bonding & Molecular Structure Isolation of Elements Hydrogen s-Block Elements p-Block Elements d and f Block Elements Coordination Compounds Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities Sequences and Series Mathematical Induction and Binomial Theorem Matrices and Determinants Permutations and Combinations Probability Vector Algebra 3D Geometry Statistics Complex Numbers
Trigonometry
Coordinate Geometry
Calculus