1
JEE Advanced 2022 Paper 2 Online
+3
-1
For positive integer $n$, define

$$f(n)=n+\frac{16+5 n-3 n^{2}}{4 n+3 n^{2}}+\frac{32+n-3 n^{2}}{8 n+3 n^{2}}+\frac{48-3 n-3 n^{2}}{12 n+3 n^{2}}+\cdots+\frac{25 n-7 n^{2}}{7 n^{2}} .$$

Then, the value of $$\mathop {\lim }\limits_{n \to \infty } f\left( n \right)$$ is equal to :
A
$3+\frac{4}{3} \log _{e} 7$
B
$4-\frac{3}{4} \log _{e}\left(\frac{7}{3}\right)$
C
$4-\frac{4}{3} \log _{e}\left(\frac{7}{3}\right)$
D
$3+\frac{3}{4} \log _{e} 7$
2
JEE Advanced 2018 Paper 2 Offline
+3
-1
Let $${f_1}:R \to R,\,{f_2}:\left( { - {\pi \over 2},{\pi \over 2}} \right) \to R,\,{f_3}:( - 1,{e^{\pi /2}} - 2) \to R$$ and $${f_4}:R \to R$$ be functions defined by

(i) $${f_1}(x) = \sin (\sqrt {1 - {e^{ - {x^2}}}} )$$,

(ii) $${f_2}(x) = \left\{ \matrix{ {{|\sin x|} \over {\tan { - ^1}x}}if\,x \ne 0,\,where \hfill \cr 1\,if\,x = 0 \hfill \cr} \right.$$

the inverse trigonometric function tan$$-$$1x assumes values in $$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$,

(iii) $${f_3}(x) = [\sin ({\log _e}(x + 2))]$$, where for $$t \in R,\,[t]$$ denotes the greatest integer less than or equal to t,

(iv) $${f_4}(x) = \left\{ \matrix{ {x^2}\sin \left( {{1 \over x}} \right)\,if\,x \ne 0 \hfill \cr 0\,if\,x = 0 \hfill \cr} \right.$$
LIST-I LIST-II
P. The function $$f_1$$ is 1. NOT continuous at $$x = 0$$
Q. The function $$f_2$$ is 2. continuous at $$x = 0$$ and NOT differentiable at $$x = 0$$
R. The function $$f_3$$ is 3. differentiable at $$x = 0$$ and its derivative is NOT continuous at $$x = 0$$
S. The function $$f_4$$ is 4. differentiable at $$x = 0$$ and its derivative is continuous at $$x = 0$$
A
P $$\to$$ 2 ; Q $$\to$$ 3 ; R $$\to$$ 1 ; S $$\to$$ 4
B
P $$\to$$ 4 ; Q $$\to$$ 1 ; R $$\to$$ 2 ; S $$\to$$ 3
C
P $$\to$$ 4 ; Q $$\to$$ 2 ; R $$\to$$ 1 ; S $$\to$$ 3
D
P $$\to$$ 2 ; Q $$\to$$ 1 ; R $$\to$$ 4 ; S $$\to$$ 3
3
JEE Advanced 2017 Paper 2 Offline
+3
-1
If f : R $$\to$$ R is a twice differentiable function such that f"(x) > 0 for all x$$\in$$R, and $$f\left( {{1 \over 2}} \right) = {1 \over 2}$$, f(1) = 1, then
A
f'(1) $$\le$$ 0
B
f'(1) > 1
C
0 < f'(1) $$\le$$ $${1 \over 2}$$
D
$${1 \over 2}$$ < f'(1) $$\le$$ 1
4
IIT-JEE 2012 Paper 1 Offline
+3
-1

If $$\mathop {\lim }\limits_{x \to \infty } \left( {{{{x^2} + x + 1} \over {x + 1}} - ax - b} \right) = 4$$, then

A
a = 1, b = 4
B
a = 1, b = $$-$$4
C
a = 2, b = $$-$$3
D
a = 2, b = 3
EXAM MAP
Medical
NEET