1
IIT-JEE 2012 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1

For every integer n, let an and bn be real numbers. Let function f : R $$\to$$ R be given by

$$f(x) = \left\{ {\matrix{ {{a_n} + \sin \pi x,} & {for\,x \in [2n,2n + 1]} \cr {{b_n} + \cos \pi x,} & {for\,x \in (2n - 1,2n)} \cr } } \right.$$, for all integers n. If f is continuous, then which of the following hold(s) for all n ?

A
an $$-$$ 1 $$-$$ bn $$-$$ 1 = 0
B
an $$-$$ bn = 1
C
an $$-$$ bn $$+$$ 1 = 1
D
an $$-$$ 1 $$-$$ bn = $$-$$1
2
IIT-JEE 2011 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1

Let f : R $$\to$$ R be a function such that $$f(x + y) = f(x) + f(y),\,\forall x,y \in R$$. If f(x) is differentiable at x = 0, then

A
f(x) is differentiable only in a finite interval containing zero.
B
f(x) is continuous $$\forall x \in R$$.
C
f'(x) is constant $$\forall x \in R$$.
D
f(x) is differentiable except at finitely many points.
3
IIT-JEE 2011 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1

If $$f(x) = \left\{ {\matrix{ { - x - {\pi \over 2},} & {x \le - {\pi \over 2}} \cr { - \cos x} & { - {\pi \over 2} < x \le 0} \cr {x - 1} & {0 < x \le 1} \cr {\ln x} & {x > 1} \cr } } \right.$$, then

A
f(x) is continuous at x = $$-$$ $$\pi$$/2.
B
f(x) is not differentiable at x = 0.
C
f(x) is differentiable at x = 1.
D
f(x) is differentiable at x = $$-$$3/2.
4
IIT-JEE 2009 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2

Let $$L = \mathop {\lim }\limits_{x \to 0} {{a - \sqrt {{a^2} - {x^2}} - {{{x^2}} \over 4}} \over {{x^4}}},a > 0$$. If L is finite, then

A
$$a = 2$$
B
$$a = 1$$
C
$$L = {1 \over {64}}$$
D
$$L = {1 \over {32}}$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12