1
JEE Advanced 2020 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let the function f : R $$ \to $$ R be defined by f(x) = x3 $$-$$ x2 + (x $$-$$ 1)sin x and let g : R $$ \to $$ R be an arbitrary function. Let fg : R $$ \to $$ R be the product function defined by (fg)(x) = f(x)g(x). Then which of the following statements is/are TRUE?
A
If g is continuous at x = 1, then fg is differentiable at x = 1
B
If f g is differentiable at x = 1, then g is continuous at x = 1
C
If g is differentiable at x = 1, then fg is differentiable at x = 1
D
If f g is differentiable at x = 1, then g is differentiable at x = 1
2
JEE Advanced 2019 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
For $$a \in R,\,|a|\, > 1$$, let

$$\mathop {\lim }\limits_{n \to \infty } \left( {{{1 + \root 3 \of 2 + ...\root 3 \of n } \over {{n^{7/3}}\left( {{1 \over {{{(an + 1)}^2}}} + {1 \over {{{(an + 2)}^2}}} + ... + {1 \over {{{(an + n)}^2}}}} \right)}}} \right) = 54$$
A
$$-$$6
B
$$-$$7
C
8
D
$$-$$9
3
JEE Advanced 2019 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Let f : R be a function. We say that f has

PROPERTY 1 if $$\mathop {\lim }\limits_{h \to 0} {{f(h) - f(0)} \over {\sqrt {|h|} }}$$ exists and is finite, and

PROPERTY 2 if $$\mathop {\lim }\limits_{h \to 0} {{f(h) - f(0)} \over {{h^2}}}$$ exists and is finite. Then which of the following options is/are correct?
A
f(x) = sin x has PROPERTY 2
B
f(x) = x2/3 has PROPERTY 1
C
f(x) = |x| has PROPERTY 1
D
f(x) = x|x| has PROPERTY 2
4
JEE Advanced 2019 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Let f : R $$ \to $$ R be given by

$$f(x) = \left\{ {\matrix{ {{x^5} + 5{x^4} + 10{x^3} + 10{x^2} + 3x + 1,} & {x < 0;} \cr {{x^2} - x + 1,} & {0 \le x < 1;} \cr {{2 \over 3}{x^3} - 4{x^2} + 7x - {8 \over 3},} & {1 \le x < 3;} \cr {(x - 2){{\log }_e}(x - 2) - x + {{10} \over 3},} & {x \ge 3;} \cr } } \right\}$$

Then which of the following options is/are correct?
A
f is increasing on ($$ - $$$$\infty $$, 0)
B
f' is not differentiable at x = 1
C
f is onto
D
f' has a local maximum at x = 1
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12