A particle is performing S.H.M. about its mean position with an amplitude ' $a$ ' and periodic time ' $T$ '. The speed of the particle when its displacement from mean position is $\frac{a}{3}$ will be
A piece of wood has length, breadth and height, ' $a$ ', ' $b$ ' and ' $c$ ' respectively. Its relative density, is ' $d$ '. It is floating in water such that the side ' $a$ ' is vertical. It is pushed down a little and released. The time period of S.H.M. executed by it is ($\mathrm{g}=$ acceleration due to gravity)
All the springs in fig. (a), (b) and (c) are identical, each having force constant K . Mass attached to each system is ' $m$ '. If $T_a, T_b$ and $T_c$ are the time periods of oscillations of the three systems respectively, then
A simple pendulum of length ' $L$ ' has mass ' $M$ ' and it oscillates freely with amplitude ' $A$ '. At extreme position, its potential energy is