The maximum velocity and maximum acceleration of a particle performing a linear S.H.M. is ' $\alpha$ ' and ' $\beta$ ' respectively. Then the path length of the particle is
A mass ' $m$ ' attached to a spring oscillates with a period of 3 second. If the mass is increased by 0.6 kg , the period increases by 3 second. The initial mass ' $m$ ' is equal to
The velocity of particle executing S.H.M. varies with displacement $(\mathrm{x})$ as $4 \mathrm{~V}^2=50-\mathrm{x}^2$. The time period of oscillation is $\frac{x}{7}$ second. The value of ' $x$ ' is (Take $\pi=\frac{22}{7}$)
A simple pendulum of length $l_1$ has time period $\mathrm{T}_1$. Another simple pendulum of length $l_2\left(l_1>l_2\right)$ has time period $T_2$. Then the time period of the pendulum of length $\left(l_1-l_2\right)$ will be