A particle performing S.H.M. starts from equilibrium position and its time period is 12 second. After 2 seconds its velocity is $\pi \mathrm{m} / \mathrm{s}$. Amplitude of the oscillation is $\left[\sin 30^{\circ}=\cos 60^{\circ}=0 \cdot 5, \sin 60^{\circ}=\cos 30^{\circ}=\sqrt{3} / 2\right]$
A particle performs linear S.H.M. at a particular instant, velocity of the particle is ' $u$ ' and acceleration is ' $\mathrm{a}_1$ ' while at another instant velocity is ' V ' and acceleration is ' $a_2$ ' $\left(0
A particle starts oscillating simple harmonically from its equilibrium position with time period ' T '. What is the ratio of potential energy to kinetic energy of the particle at time $t=\frac{T}{12}$ ? $$\left(\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}\right)$$
A particle performs linear S.H.M. When the displacement of the particle from mean position is 3 cm and 4 cm , corresponding velocities are $8 \mathrm{~cm} / \mathrm{s}$ and $6 \mathrm{~cm} / \mathrm{s}$ respectively. Its periodic time is