1
MHT CET 2025 5th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

All the springs in fig. (a), (b) and (c) are identical, each having force constant K each. Mass m is attached to each system. If $\mathrm{T}_a, \mathrm{~T}_b$ and $\mathrm{T}_{\mathrm{c}}$ are the time periods of oscillations of the three systems in fig. (a), (b) and (c) respectively, then

A

$\quad \mathrm{T}_{\mathrm{a}}=\sqrt{2} \mathrm{~T}_{\mathrm{b}}$

B

$\quad \mathrm{T}_{\mathrm{a}}=\frac{\mathrm{T}_{\mathrm{c}}}{\sqrt{2}}$

C

$\mathrm{T}_{\mathrm{b}}=2 \mathrm{~T}_{\mathrm{a}}$

D

$\quad \mathrm{T}_{\mathrm{b}}=2 \mathrm{~T}_{\mathrm{c}}$

2
MHT CET 2025 5th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

A point particle of mass 200 gram is executing S.H.M. of amplitude 0.2 m . When the particle passes through the mean position, its kinetic energy is $16 \times 10^{-3} \mathrm{~J}$. The equation of motion of this particle is (Initial phase of oscillation $=0^{\circ}$ )

A

$\mathrm{Y}=0.2 \sin (4 \mathrm{t})$

B

$\mathrm{Y}=0.2 \sin \left(\frac{\mathrm{t}}{4}\right)$

C

$\mathrm{Y}=0.2 \sin \left(\frac{\mathrm{t}}{2}\right)$

D

$\mathrm{Y}=0.2 \sin (2 \mathrm{t})$

3
MHT CET 2025 5th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

A simple pendulum starts oscillating simple harmonically from its mean position ( $\mathrm{x}=0$ ) with amplitude ' $a$ ' and periodic time ' $T$ '. The magnitude of velocity of pendulum at $x=\frac{a}{2}$ is

A

$\frac{3 \pi^2 a}{T}$

B

$\frac{\sqrt{3} \pi a}{2 T}$

C

$\frac{\pi a}{T}$

D

$\frac{\sqrt{3} \pi \mathrm{a}}{\mathrm{T}}$

4
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

A simple pendulum is suspended from ceiling of a lift when lift is at rest its period is ' T '. With what acceleration ' $a$ ' should lift be accelerated upward in order to reduce the period to ' $T$ '? (take ' g ' as acceleration due to gravity)

A

2 g

B

3 g

C

4 g

D

g

MHT CET Subjects
EXAM MAP