A particle starts oscillating simple harmonically from its equilibrium position with time period ' T '. What is the ratio of potential energy to kinetic energy of the particle at time $t=\frac{T}{12}$ ? $$\left(\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}\right)$$
A particle performs linear S.H.M. When the displacement of the particle from mean position is 3 cm and 4 cm , corresponding velocities are $8 \mathrm{~cm} / \mathrm{s}$ and $6 \mathrm{~cm} / \mathrm{s}$ respectively. Its periodic time is
A simple pendulum of length ' $l$ ' has a brass bob attached at its lower end. It's period is ' T '. A steel bob of the same size, having density ' $x$ ' times that of brass, replaces the brass bob. Its length is then so changed that the period becomes ' 2 T '. What is the new length?
A particle performing S.H.M. with maximum velocity ' $V$ '. If the amplitude double and periodic time is made, $\left(\frac{1}{3}\right)^{\text {rd }}$ then the maximum velocity is