1
MHT CET 2021 21th September Evening Shift
+1
-0

A child is sitting on a swing which performs S.H.M. It has minimum and maximum heights from ground $$0.75 \mathrm{~cm}$$ and $$2 \mathrm{~m}$$ respectively. Its maximum speed will be $$\left[\mathrm{g}=10 \frac{\mathrm{m}}{\mathrm{s}^2}\right]$$

A
$$\sqrt{1.25} \mathrm{~m} / \mathrm{s}$$
B
$$\sqrt{12.5} \mathrm{~m} / \mathrm{s}$$
C
$$5 \mathrm{~m} / \mathrm{s}$$
D
$$25 \mathrm{~m} / \mathrm{s}$$
2
MHT CET 2021 21th September Evening Shift
+1
-0

A pendulum clock is running fast. To correct its time, we should

A
reduce the mass of the bob.
B
reduce the amplitude of oscillation.
C
increase the length of the pendulum.
D
reduce the length of the pendulum.
3
MHT CET 2021 21th September Evening Shift
+1
-0

A particle is performing S.H.M. with maximum velocity '$$v$$'. If the amplitude is tripled and periodic time is doubled then maximum velocity will be

A
$$1.5 \mathrm{~v}$$
B
$$3 \mathrm{~v}$$
C
$$2 \mathrm{~v}$$
D
$$\mathrm{v}$$
4
MHT CET 2021 20th September Evening Shift
+1
-0

A particle executes S.H.M. of period $$\frac{2 \pi}{\sqrt{3}}$$ second along a straight line $$4 \mathrm{~cm}$$ long. The displacement of the particle at which the velocity is numerically equal to the acceleration is

A
$$2 \mathrm{~cm}$$
B
$$1 \mathrm{~cm}$$
C
$$4 \mathrm{~cm}$$
D
$$3 \mathrm{~cm}$$
EXAM MAP
Medical
NEET