A particle executes S.H.M. of period $$\frac{2 \pi}{\sqrt{3}}$$ second along a straight line $$4 \mathrm{~cm}$$ long. The displacement of the particle at which the velocity is numerically equal to the acceleration is
A particle is suspended from a vertical spring which is executing S.H.M. of frequency $$5 \mathrm{~Hz}$$. The spring is unstretched at the highest point of oscillation. Maximum speed of the particle is $$(\mathrm{g} =10 \mathrm{~m} / \mathrm{s}^2)$$
A body performs S.H.M. under the action of force '$$\mathrm{F}_1$$' with period '$$\mathrm{T}_1$$' second. If the force is changed to '$$\mathrm{F}_2$$' it performs S.H.M. with period '$$\mathrm{T_2}$$' second. If both forces '$$\mathrm{F_1}$$' and '$$\mathrm{F_2}$$' act simultaneously in the same direction on the body, the period in second will be
A mass '$$\mathrm{m}_1$$' is suspended from a spring of negligible mass. A spring is pulled slightly in downward direction and released, mass performs S.H.M. of period '$$\mathrm{T}_1$$'. If the mass is increased by '$$\mathrm{m}_2$$', the time period becomes '$$\mathrm{T}_2$$'. The ratio $$\frac{\mathrm{m}_2}{\mathrm{~m}_1}$$ is