A particle is executing a linear simple harmonic motion. Let ' $\mathrm{V}_1$ ' and ' $\mathrm{V}_2$ ' are its speed at distance ' $x_1$ ' and ' $x_2$ ' from the equilibrium position. The amplitude of oscillation is
In S.H.M. the displacement of a particle at an instant is $Y=A \cos 30^{\circ}$, where $A=40 \mathrm{~cm}$ and kinetic energy is 200 J . If force constant is $1 \times 10^{\times} \mathrm{N} / \mathrm{m}$, then x will be $\left(\cos 30^{\circ}=\sqrt{3} / 2\right)$
A particle is performing S.H.M. with an amplitude 4 cm . At the mean position the velocity of the particle is $12 \mathrm{~cm} / \mathrm{s}$. When the speed of the particle becomes $6 \mathrm{~cm} / \mathrm{s}$, the distance of the particle from mean position is
The maximum velocity and maximum acceleration of a particle performing a linear S.H.M. is ' $\alpha$ ' and ' $\beta$ ' respectively. Then the path length of the particle is