1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

A particle is executing a linear simple harmonic motion. Let ' $\mathrm{V}_1$ ' and ' $\mathrm{V}_2$ ' are its speed at distance ' $x_1$ ' and ' $x_2$ ' from the equilibrium position. The amplitude of oscillation is

A
$\sqrt{\frac{V_1^2 x_2^2-V_2^2 x_2^2}{V_1^2-V_2^2}}$
B
  $\sqrt{\frac{V_1^2-V_2^2}{V_1^2 x_2^2-V_2^2 x_1^2}}$
C
$\sqrt{\frac{V_1^2 x_2^2-V_2^2 x_1^2}{V_1^2-V_2^2}}$
D
$\sqrt{\frac{V_1^2 x_1^2-V_2^2 x_2^2}{V_1^2-V_2^2}}$
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

In S.H.M. the displacement of a particle at an instant is $Y=A \cos 30^{\circ}$, where $A=40 \mathrm{~cm}$ and kinetic energy is 200 J . If force constant is $1 \times 10^{\times} \mathrm{N} / \mathrm{m}$, then x will be $\left(\cos 30^{\circ}=\sqrt{3} / 2\right)$

A
4
B
3
C
2
D
1
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A particle is performing S.H.M. with an amplitude 4 cm . At the mean position the velocity of the particle is $12 \mathrm{~cm} / \mathrm{s}$. When the speed of the particle becomes $6 \mathrm{~cm} / \mathrm{s}$, the distance of the particle from mean position is

A
$\sqrt{3} \mathrm{~cm}$
B
$\sqrt{6} \mathrm{~cm}$
C
$2 \sqrt{3} \mathrm{~cm}$
D
$2 \sqrt{6} \mathrm{~cm}$
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The maximum velocity and maximum acceleration of a particle performing a linear S.H.M. is ' $\alpha$ ' and ' $\beta$ ' respectively. Then the path length of the particle is

A
$\frac{\alpha^2}{\beta}$
B
$\frac{\beta \alpha^2}{2 \alpha^2}$
C
$\frac{2 \alpha^2}{\beta}$
D
$\frac{2 \beta}{\alpha^2}$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12