1
MHT CET 2021 23th September Morning Shift
+1
-0

A particle performing S.H.M. when displacement is '$$x$$', the potential energy and restoring force acting on it are denoted by '$$E$$' and '$$F$$' respectively. The relation between $$x, E$$ and $$F$$ is

A
$$\frac{2 E}{F}-x^2=0$$
B
$$\frac{2 \mathrm{E}}{\mathrm{F}}+\mathrm{x}^2=0$$
C
$$\frac{2 E}{F}+x=0$$
D
$$\frac{2 E}{F}-x=0$$
2
MHT CET 2021 23th September Morning Shift
+1
-0

A body is performing S.H.M. of amplitude 'A'. The displacement of the body from a point where kinetic energy is maximum to a point where potential energy is maximum, is

A
zero
B
$$\pm \mathrm{A}$$
C
$$\pm \frac{\mathrm{A}}{2}$$
D
$$\pm \frac{\mathrm{A}}{4}$$
3
MHT CET 2021 23th September Morning Shift
+1
-0

A particle excuting S.H.M starts from the mean position. Its amplitude is 'A' and time period '$$\mathrm{T}$$' At what displacement its speed is one-fourth of the maximum speed?

A
$$\frac{\mathrm{A}}{\sqrt{15}}$$
B
$$\frac{\mathrm{A}}{4}$$
C
$$\frac{4 \mathrm{~A}}{15}$$
D
$$\frac{\mathrm{A} \sqrt{15}}{40}$$
4
MHT CET 2021 22th September Evening Shift
+1
-0

A particle connected to the end of a spring executes S.H.M. with period '$$T_1$$'. While the corresponding period for another spring is '$$\mathrm{T}_2$$'. If the period of oscillation with two springs in series is 'T', then

A
$$\mathrm{T}=\sqrt{\mathrm{T}_1^2+\mathrm{T}_2^2}$$
B
$$\mathrm{T}=\sqrt{\mathrm{T}_2^2-\mathrm{T}_1^2}$$
C
$$\mathrm{T=T_1+T_2}$$
D
$$\mathrm{T}=\mathrm{T}_1-\mathrm{T}_2$$
EXAM MAP
Medical
NEET