A horizontal platform with a small object placed on it executes a linear S.H.M. in the vertical direction. The amplitude of oscillation is 40 cm . What should be the least period of these oscillations, so that the object is not detached from the platform? [Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$]
Starting from mean position, a body oscillates simple harmonically with a period ' $T$ '. After what time will its kinetic energy be $75 \%$ of the total energy? $\left(\sin 30^{\circ}=0.5\right)$
The maximum velocity of a particle, executing S.H.M. with an amplitude 7 mm is $4.4 \mathrm{~ms}^{-1}$ The period of oscillation is $\left[\pi=\frac{22}{7}\right]$
A particle is performing S.H.M. about its mean position with an amplitude ' $a$ ' and periodic time ' $T$ '. The speed of the particle when its displacement from mean position is $\frac{a}{3}$ will be