A particle performing S.H.M. with maximum velocity ' $V$ '. If the amplitude double and periodic time is made, $\left(\frac{1}{3}\right)^{\text {rd }}$ then the maximum velocity is
Let ' $l_1$ ' be the length of simple pendulum. Its length changes to ' $l_2$ ' to increase the periodic time by $20 \%$. The ratio $\frac{l_2}{l_1}=$
A particle is executing a linear simple harmonic motion. Let ' $\mathrm{V}_1$ ' and ' $\mathrm{V}_2$ ' are its speed at distance ' $x_1$ ' and ' $x_2$ ' from the equilibrium position. The amplitude of oscillation is
In S.H.M. the displacement of a particle at an instant is $Y=A \cos 30^{\circ}$, where $A=40 \mathrm{~cm}$ and kinetic energy is 200 J . If force constant is $1 \times 10^{\times} \mathrm{N} / \mathrm{m}$, then x will be $\left(\cos 30^{\circ}=\sqrt{3} / 2\right)$