1
MHT CET 2023 11th May Morning Shift
+1
-0

For a particle executing S.H.M., its potential energy is 8 times its kinetic energy at certain displacement '$$x$$' from the mean position. If '$$A$$' is the amplitude of S.H.M the value of '$$x$$' is

A
$$\frac{\mathrm{A} \sqrt{2}}{3}$$
B
$$\mathrm{A} \sqrt{3}$$
C
$$\frac{2 \sqrt{2} \mathrm{~A}}{3}$$
D
$$\frac{\mathrm{A}}{\sqrt{2}}$$
2
MHT CET 2023 11th May Morning Shift
+1
-0

The time period of a simple pendulum inside a stationary lift is '$$T$$'. When the lift starts accelerating upwards with an acceleration $$\left(\frac{\mathrm{g}}{3}\right)$$, the time period of the pendulum will be

A
$$\frac{\sqrt{5}}{2} \mathrm{~T}$$
B
$$\frac{\sqrt{3}}{2} \mathrm{~T}$$
C
$$\frac{2 \mathrm{~T}}{\sqrt{3}}$$
D
$$\frac{2 \mathrm{~T}}{\sqrt{5}}$$
3
MHT CET 2023 10th May Evening Shift
+1
-0

A body is executing a linear S.H.M. Its potential energies at the displacement '$$\mathrm{x}$$' and '$$\mathrm{y}$$' are '$$\mathrm{E}_1$$' and '$$E_2$$' respectively. Its potential energy at displacement $$(\mathrm{x}+\mathrm{y})$$ will be

A
$$\mathrm{E}_1+\mathrm{E}_2$$
B
$$\left(\sqrt{\mathrm{E}_1}+\sqrt{\mathrm{E}_2}\right)^2$$
C
$$\quad \mathrm{E}_1-\mathrm{E}_2$$
D
$$\left(\sqrt{\mathrm{E}_2}-\sqrt{\mathrm{E}_1}\right)^2$$
4
MHT CET 2023 10th May Evening Shift
+1
-0

A simple harmonic progressive wave is represented by $$y=A \sin (100 \pi t+3 x)$$. The distance between two points on the wave at a phase difference of $$\frac{\pi}{3}$$ radian is

A
$$\frac{\pi}{8} \mathrm{~m}$$
B
$$\frac{\pi}{9} \mathrm{~m}$$
C
$$\frac{\pi}{6} \mathrm{~m}$$
D
$$\frac{\pi}{3} \mathrm{~m}$$
EXAM MAP
Medical
NEET