1
MHT CET 2023 10th May Evening Shift
+1
-0

A body is executing a linear S.H.M. Its potential energies at the displacement '$$\mathrm{x}$$' and '$$\mathrm{y}$$' are '$$\mathrm{E}_1$$' and '$$E_2$$' respectively. Its potential energy at displacement $$(\mathrm{x}+\mathrm{y})$$ will be

A
$$\mathrm{E}_1+\mathrm{E}_2$$
B
$$\left(\sqrt{\mathrm{E}_1}+\sqrt{\mathrm{E}_2}\right)^2$$
C
$$\quad \mathrm{E}_1-\mathrm{E}_2$$
D
$$\left(\sqrt{\mathrm{E}_2}-\sqrt{\mathrm{E}_1}\right)^2$$
2
MHT CET 2023 10th May Evening Shift
+1
-0

A simple harmonic progressive wave is represented by $$y=A \sin (100 \pi t+3 x)$$. The distance between two points on the wave at a phase difference of $$\frac{\pi}{3}$$ radian is

A
$$\frac{\pi}{8} \mathrm{~m}$$
B
$$\frac{\pi}{9} \mathrm{~m}$$
C
$$\frac{\pi}{6} \mathrm{~m}$$
D
$$\frac{\pi}{3} \mathrm{~m}$$
3
MHT CET 2023 10th May Morning Shift
+1
-0

The amplitude of a particle executing S.H.M. is $$3 \mathrm{~cm}$$. The displacement at which its kinetic energy will be $$25 \%$$ more than the potential energy is

A
$$1 \mathrm{~cm}$$
B
$$2 \mathrm{~cm}$$
C
$$3 \mathrm{~cm}$$
D
$$4 \mathrm{~cm}$$
4
MHT CET 2023 9th May Evening Shift
+1
-0

Two S.H.Ms. are represented by equations $$\mathrm{y}_1=0.1 \sin \left(100 \pi \mathrm{t}+\frac{\pi}{3}\right)$$ and $$\mathrm{y}_2=0.1 \cos (100 \pi \mathrm{t})$$ The phase difference between the speeds of the two particles is

A
$$\frac{\pi}{3}$$
B
$$-\frac{\pi}{6}$$
C
$$+\frac{\pi}{6}$$
D
$$-\frac{\pi}{3}$$
EXAM MAP
Medical
NEET