1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The motion of a particle is described by the equation $a=-b x$ where ' $a$ ' is the acceleration, x is the displacement from the equilibrium position and b is a constant. The periodic time will be

A
$\frac{2 \pi}{\mathrm{~b}}$
B
$\frac{2 \pi}{\sqrt{b}}$
C
$2 \pi \sqrt{b}$
D
$2 \sqrt{\frac{\pi}{b}}$
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A horizontal platform with a small object placed on it executes a linear S.H.M. in the vertical direction. The amplitude of oscillation is 40 cm . What should be the least period of these oscillations, so that the object is not detached from the platform? [Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$]

A
$0.2 \pi \mathrm{~s}$
B
$0.3 \pi \mathrm{~s}$
C
$0.4 \pi \mathrm{~s}$
D
$0.5 \pi \mathrm{~s}$
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Starting from mean position, a body oscillates simple harmonically with a period ' $T$ '. After what time will its kinetic energy be $75 \%$ of the total energy? $\left(\sin 30^{\circ}=0.5\right)$

A
$\frac{\mathrm{T}}{8}$
B
$\frac{\mathrm{T}}{12}$
C
$\frac{\mathrm{T}}{16}$
D
$\frac{\mathrm{T}}{24}$
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The maximum velocity of a particle, executing S.H.M. with an amplitude 7 mm is $4.4 \mathrm{~ms}^{-1}$ The period of oscillation is $\left[\pi=\frac{22}{7}\right]$

A
100 s
B
10 s
C
0.1 s
D
0.01 s
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12