1
IIT-JEE 2010 Paper 1 Offline
Numerical
+4
-0
Let $${S_k}$$= 1, 2,....., 100, denote the sum of the infinite geometric series whose first term is $$\,{{k - 1} \over {k\,!}}$$ and the common ratio is $${1 \over k}$$. Then the value of $${{{{100}^2}} \over {100!}}\,\, + \,\,\sum\limits_{k = 1}^{100} {\left| {({k^2} - 3k + 1)\,\,{S_k}} \right|\,\,} $$ is
Your input ____
2
IIT-JEE 2010 Paper 2 Offline
Numerical
+4
-0
Let $${a_1},\,{a_{2\,}},\,{a_3}$$......,$${a_{11}}$$ be real numbers satisfying $${a_1} = 15,27 - 2{a_2} > 0\,\,and\,\,{a_k} = 2{a_{k - 1}} - {a_{k - 2}}\,\,for\,k = 3,4,........11$$. if $$\,\,\,{{a_1^2 + a_2^2 + a_{11}^2} \over {11}} = 90$$, then the value of $${{{a_1} + {a_2} + .... + {a_{11}}} \over {11}}$$ is equal to
Your input ____
3
IIT-JEE 1990
Numerical
+4
-0
If $${\log _3}\,2\,,\,\,{\log _3}\,({2^x} - 5)\,,\,and\,\,{\log _3}\,\left( {{2^x} - {7 \over 2}} \right)$$ are in arithmetic progression, determine the value of x.
Your input ____
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12