1

IIT-JEE 2010 Paper 1 Offline

Numerical
Let $${S_k}$$= 1, 2,....., 100, denote the sum of the infinite geometric series whose first term is $$\,{{k - 1} \over {k\,!}}$$ and the common ratio is $${1 \over k}$$. Then the value of $${{{{100}^2}} \over {100!}}\,\, + \,\,\sum\limits_{k = 1}^{100} {\left| {({k^2} - 3k + 1)\,\,{S_k}} \right|\,\,} $$ is
Your Input ________

Answer

Correct Answer is 3

Explanation

We have

$${S_k} = {{\left( {{{k - 1} \over {k!}}} \right)} \over {\left( {1 - {1 \over k}} \right)}} = {1 \over {(k - 1)!}}$$

Now, $$\sum\limits_{k = 2}^{100} {\left| {({k^2} - 3k + 1){1 \over {(k - 1)!}}} \right|} $$

$$ = \sum\limits_{k = 2}^{100} {\left| {{{{{(k - 1)}^2} - k} \over {(k - 1)!}}} \right|} $$

$$ = \sum {\left| {{{k - 1} \over {(k - 2)!}} - {k \over {(k - 1)!}}} \right|} $$

$$ = \left| {{2 \over {1!}} - {3 \over {2!}}} \right| + \left| {{3 \over {2!}} - {4 \over {3!}}} \right| + ....$$

$$ = {2 \over {1!}} - {1 \over {0!}} + {2 \over {1!}} - {3 \over {2!}} - {4 \over {3!}} + .... + {{99} \over {98!}} - {{100} \over {99!}}$$

$$ = 3 - {{100} \over {99!}}$$

Thus, $${{{{100}^2}} \over {\left| \!{\underline {\, {100} \,}} \right. }} + \sum\limits_{k = 1}^{100} {\left| {({k^2} - 3k + 1){S_k}} \right| = 3} $$

2

IIT-JEE 1990

Numerical
If $${\log _3}\,2\,,\,\,{\log _3}\,({2^x} - 5)\,,\,and\,\,{\log _3}\,\left( {{2^x} - {7 \over 2}} \right)$$ are in arithmetic progression, determine the value of x.
Your Input ________

Answer

Correct Answer is 3

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12