1
JEE Advanced 2022 Paper 1 Online
Numerical
+3
-0
Change Language
Let $$l_{1}, l_{2}, \ldots, l_{100}$$ be consecutive terms of an arithmetic progression with common difference $$d_{1}$$, and let $$w_{1}, w_{2}, \ldots, w_{100}$$ be consecutive terms of another arithmetic progression with common difference $$d_{2}$$, where $$d_{1} d_{2}=10$$. For each $$i=1,2, \ldots, 100$$, let $R_{i}$ be a rectangle with length $$l_{i}$$, width $$w_{i}$$ and area $A_{i}$. If $$A_{51}-A_{50}=1000$$, then the value of $$A_{100}-A_{90}$$ is __________.
Your input ____
2
JEE Advanced 2020 Paper 1 Offline
Numerical
+4
-0
Change Language
Let m be the minimum possible value of $${\log _3}({3^{{y_1}}} + {3^{{y_2}}} + {3^{{y_3}}})$$, where $${y_1},{y_2},{y_3}$$ are real numbers for which $${{y_1} + {y_2} + {y_3}}$$ = 9. Let M be the maximum possible value of $$({\log _3}{x_1} + {\log _3}{x_2} + {\log _3}{x_3})$$, where $${x_1},{x_2},{x_3}$$ are positive real numbers for which $${{x_1} + {x_2} + {x_3}}$$ = 9. Then the value of $${\log _2}({m^3}) + {\log _3}({M^2})$$ is ...........
Your input ____
3
JEE Advanced 2020 Paper 1 Offline
Numerical
+4
-0
Change Language
Let a1, a2, a3, .... be a sequence of positive integers in arithmetic progression with common difference 2. Also, let b1, b2, b3, .... be a sequence of positive integers in geometric progression with common ratio 2. If a1 = b1 = c, then the number of all possible values of c, for which the equality 2(a1 + a2 + ... + an) = b1 + b2 + ... + bn holds for some positive integer n, is ...........
Your input ____
4
JEE Advanced 2019 Paper 1 Offline
Numerical
+3
-0
Change Language
Let AP(a; d) denote the set of all the terms of an infinite arithmetic progression with first term a and common difference d > 0. If $$AP(1;3) \cap AP(2;5) \cap AP(3;7)$$ = AP(a ; d), then a + d equals ..............
Your input ____
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12