1
JEE Advanced 2013 Paper 1 Offline
Numerical
+4
-0
A pack contains $$n$$ cards numbered from $$1$$ to $$n.$$ Two consecutive numbered cards are removed from the pack and the sum of the numbers on the remaining cards is $$1224.$$ If the smaller of the numbers on the removed cards is $$k,$$ then $$k-20=$$
2
IIT-JEE 2011 Paper 1 Offline
Numerical
+4
-0
Let $${{a_1}}$$, $${{a_2}}$$, $${{a_3}}$$........ $${{a_{100}}}$$ be an arithmetic progression with $${{a_1}}$$ = 3 and $${S_p} = \sum\limits_{i = 1}^p {{a_i},1 \le } \,p\, \le 100$$. For any integer n with $$1\,\, \le \,n\, \le 20$$, let m = 5n. If $${{{S_m}} \over {{S_n}}}$$ does not depend on n, then $${a_{2\,}}$$ is
3
IIT-JEE 2010 Paper 1 Offline
Numerical
+4
-0
Let $${S_k}$$= 1, 2,....., 100, denote the sum of the infinite geometric series whose first term is $$\,{{k - 1} \over {k\,!}}$$ and the common ratio is $${1 \over k}$$. Then the value of $${{{{100}^2}} \over {100!}}\,\, + \,\,\sum\limits_{k = 1}^{100} {\left| {({k^2} - 3k + 1)\,\,{S_k}} \right|\,\,}$$ is
4
IIT-JEE 2010 Paper 2 Offline
Numerical
+4
-0
Let $${a_1},\,{a_{2\,}},\,{a_3}$$......,$${a_{11}}$$ be real numbers satisfying $${a_1} = 15,27 - 2{a_2} > 0\,\,and\,\,{a_k} = 2{a_{k - 1}} - {a_{k - 2}}\,\,for\,k = 3,4,........11$$. if $$\,\,\,{{a_1^2 + a_2^2 + a_{11}^2} \over {11}} = 90$$, then the value of $${{{a_1} + {a_2} + .... + {a_{11}}} \over {11}}$$ is equal to