1
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$P(3,2,6)$$ be a point in space and $$Q$$ be a point on the line $$$\widehat r = \left( {\widehat i - \widehat j + 2\widehat k} \right) + \mu \left( { - 3\widehat i + \widehat j + 5\widehat k} \right)$$$

Then the value of $$\mu $$ for which the vector $${\overrightarrow {PQ} }$$ is parallel to the plane $$x - 4y + 3z = 1$$ is :

A
$${1 \over 4}$$
B
$$-{1 \over 4}$$
C
$${1 \over 8}$$
D
$$-{1 \over 8}$$
2
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

Consider the lines,

$${L_1}:{{x + 1} \over 3} = {{y + 2} \over 1} = {{z + 1} \over 2}$$

$${L_2}:{{x - 2} \over 1} = {{y - 2} \over 2} = {{z - 3} \over 3}$$

The distance of the point $$(1, 1, 1)$$ from the plane passing through the point $$(-1, -2, -1)$$ and whose normal is perpendicular to both the lines $${L_1}$$ and $${L_2}$$ is :
A
$${2 \over {\sqrt {75} }}$$
B
$${7 \over {\sqrt {75} }}$$
C
$${13 \over {\sqrt {75} }}$$
D
$${23 \over {\sqrt {75} }}$$
3
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
Consider three planes $$${P_1}:x - y + z = 1$$$ $$${P_2}:x + y - z = 1$$$ $$${P_3}:x - 3y + 3z = 2$$$

Let $${L_1},$$ $${L_2},$$ $${L_3}$$ be the lines of intersection of the planes $${P_2}$$ and $${P_3},$$ $${P_3}$$ and $${P_1},$$ $${P_1}$$ and $${P_2},$$ respectively.

STATEMENT - 1Z: At least two of the lines $${L_1},$$ $${L_2}$$ and $${L_3}$$ are non-parallel and

STATEMENT - 2: The three planes doe not have a common point.

A
STATEMENT - 1 is True, STATEMENT - 2 is True; STATEMENT - 2 is a correct explanation for STATEMENT - 1
B
STATEMENT - 1 is True, STATEMENT - 2 is True; STATEMENT - 2 is NOT a correct explanation for STATEMENT - 1
C
STATEMENT - 1 is True, STATEMENT - 2 is False
D
STATEMENT - 1 is False, STATEMENT - 2 is True
4
IIT-JEE 2007
MCQ (Single Correct Answer)
+3
-0.75
Consider the planes $$3x-6y-2z=15$$ and $$2x+y-2z=5.$$

STATEMENT-1: The parametric equations of the line of intersection of the given planes are $$x=3+14t,y=1+2t,z=15t.$$ because

STATEMENT-2: The vector $${14\widehat i + 2\widehat j + 15\widehat k}$$ is parallel to the line of intersection of given planes.

A
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
B
Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
C
Statement-1 is True, Statement-2 is False
D
Statement-1 is False, Statement-2 is True.
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12