1
JEE Advanced 2023 Paper 1 Online
+3
-1
Let $\ell_1$ and $\ell_2$ be the lines $\vec{r}_1=\lambda(\hat{i}+\hat{j}+\hat{k})$ and $\vec{r}_2=(\hat{j}-\hat{k})+\mu(\hat{i}+\hat{k})$, respectively. Let $X$ be the set of all the planes $H$ that contain the line $\ell_1$. For a plane $H$, let $d(H)$ denote the smallest possible distance between the points of $\ell_2$ and $H$. Let $H_0$ be a plane in $X$ for which $d\left(H_0\right)$ is the maximum value of $d(H)$ as $H$ varies over all planes in $X$.

Match each entry in List-I to the correct entries in List-II.

List - I List - II
(P) The value of $d\left(H_0\right)$ is (1) $\sqrt{3}$
(Q) The distance of the point $(0,1,2)$ from $H_0$ is (2) $\frac{1}{\sqrt{3}}$
(R) The distance of origin from $H_0$ is (3) 0
(S) The distance of origin from the point of intersection of planes $y=z, x=1$ and $H_0$ is (4) $\sqrt{2}$
(5) $\frac{1}{\sqrt{2}}$

The correct option is:
A
$$(P) \rightarrow(2) \quad(Q) \rightarrow(4) \quad(R) \rightarrow(5) \quad(S) \rightarrow(1)$$
B
$$(P) \rightarrow(5) \quad(Q) \rightarrow(4) \quad(R) \rightarrow(3) \quad(S) \rightarrow(1)$$
C
$$(P) \rightarrow(2) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(3) \quad(S) \rightarrow(2)$$
D
$$(P) \rightarrow(5) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(4) \quad(S) \rightarrow(2)$$
2
JEE Advanced 2017 Paper 2 Offline
+3
-1
Let O be the origin and let PQR be an arbitrary triangle. The point S is such that

$$\overrightarrow{OP}$$ . $$\overrightarrow{OQ}$$ + $$\overrightarrow{OR}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OR}$$ . $$\overrightarrow{OP}$$ + $$\overrightarrow{OQ}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OQ}$$ . $$\overrightarrow{OR}$$ + $$\overrightarrow{OP}$$ . $$\overrightarrow{OS}$$

Then the triangle PQR has S as its
A
centroid
B
orthocentre
C
incentre
D
circumcentre
3
JEE Advanced 2017 Paper 2 Offline
+3
-1
The equation of the plane passing through the point (1, 1, 1) and perpendicular to the planes 2x + y $$-$$ 2z = 5 and 3x $$-$$ 6y $$-$$ 2z = 7 is
A
14x + 2y $$-$$ 15z = 1
B
$$-$$14x + 2y + 15z = 3
C
14x $$-$$ 2y + 15z = 27
D
14x + 2y + 15z = 31
4
JEE Advanced 2017 Paper 2 Offline
+3
-0
Let O be the origin and $$\overrightarrow{OX}$$, $$\overrightarrow{OY}$$, $$\overrightarrow{OZ}$$ be three unit vectors in the directions of the sides $$\overrightarrow{QR}$$, $$\overrightarrow{RP}$$, $$\overrightarrow{PQ}$$ respectively, of a triangle PQR.
If the triangle PQR varies, then the minimum value of cos(P + Q) + cos(Q + R) + cos(R + P) is
A
$$- {3 \over 2}$$
B
$${3 \over 2}$$
C
$${5 \over 3}$$
D
$$- {5 \over 3}$$
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination