1
JEE Advanced 2013 Paper 2 Offline
+4
-1
Consider the lines

$${L_1}:{{x - 1} \over 2} = {y \over { - 1}} = {{z + 3} \over 1},{L_2} : {{x - 4} \over 1} = {{y + 3} \over 1} = {{z + 3} \over 2}$$

and the planes $${P_1}:7x + y + 2z = 3,{P_2} = 3x + 5y - 6z = 4.$$ Let $$ax+by+cz=d$$ be the equation of the plane passing through the point of intersection of lines $${L_1}$$ and $${L_2},$$ and perpendicular to planes $${P_1}$$ and $${P_2}.$$

Match List $$I$$ with List $$II$$ and select the correct answer using the code given below the lists:
List $$I$$
(P.) $$a=$$
(Q.) $$b=$$
(R.) $$c=$$
(S.) $$d=$$

List $$II$$
(1.) $$13$$
(2.) $$-3$$
(3.) $$1$$
(4.) $$-2$$

A
$$P = 3,Q = 2,R = 4,S = 1$$
B
$$P = 1,Q = 3,R = 4,S = 2$$
C
$$P = 3,Q = 2,R = 1,S = 4$$
D
$$P = 2,Q = 4,R = 1,S = 3$$
2
IIT-JEE 2012 Paper 2 Offline
+4
-1
The equation of a plane passing through the line of intersection of the planes $$x+2y+3z=2$$ and $$x-y+z=3$$ and at a distance $${2 \over {\sqrt 3 }}$$ from the point $$(3, 1, -1)$$ is
A
$$5x-11y+z=17$$
B
$$\sqrt 2 x + y = 3\sqrt 2 - 1$$
C
$$x + y + z = \sqrt 3$$
D
$$x - \sqrt 2 y = 1 - \sqrt 2$$
3
IIT-JEE 2012 Paper 2 Offline
+4
-1
If $$\overrightarrow a$$ and $$\overrightarrow b$$ are vectors such that $$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {29}$$ and $$\,\overrightarrow a \times \left( {2\widehat i + 3\widehat j + 4\widehat k} \right) = \left( {2\widehat i + 3\widehat j + 4\widehat k} \right) \times \widehat b,$$ then a possible value of $$\left( {\overrightarrow a + \overrightarrow b } \right).\left( { - 7\widehat i + 2\widehat j + 3\widehat k} \right)$$ is
A
$$0$$
B
$$3$$
C
$$4$$
D
$$8$$
4
IIT-JEE 2012 Paper 1 Offline
+4
-1
The point $$P$$ is the intersection of the straight line joining the points $$Q(2, 3, 5)$$ and $$R(1, -1, 4)$$ with the plane $$5x-4y-z=1.$$ If $$S$$ is the foot of the perpendicular drawn from the point $$T(2, 1, 4)$$ to $$QR,$$ then the length of the line segment $$PS$$ is
A
$${{1 \over {\sqrt 2 }}}$$
B
$${\sqrt 2 }$$
C
$$2$$
D
$${2\sqrt 2 }$$
EXAM MAP
Medical
NEET