1
IIT-JEE 1999
Subjective
+10
-0
Let $$f(x)$$ be a continuous function given by $$f\left( x \right) = \left\{ {\matrix{ {2x,} & {\left| x \right| \le 1} \cr {{x^2} + ax + b,} & {\left| x \right| > 1} \cr } } \right\}$$\$

Find the area of the region in the third quadrant bounded by the curves $$x = - 2{y^2}$$ and $$y=f(x)$$ lying on the left of the line $$8x+1=0.$$

2
IIT-JEE 1997
Subjective
+5
-0
Let $$f(x)= Maximum$$ $$\,\left\{ {{x^2},{{\left( {1 - x} \right)}^2},2x\left( {1 - x} \right)} \right\},$$ where $$0 \le x \le 1.$$
Determine the area of the region bounded by the curves
$$y = f\left( x \right),$$ $$x$$-axes, $$x=0$$ and $$x=1.$$
3
IIT-JEE 1996
Subjective
+3
-0
Let $${A_n}$$ be the area bounded by the curve $$y = {\left( {\tan x} \right)^n}$$ and the
lines $$x=0,$$ $$y=0,$$ and $$x = {\pi \over 4}.$$ Prove that for $$n > 2,$$
$${A_n} + {A_{n - 2}} = {1 \over {n - 1}}$$ and deduce $${1 \over {2n + 2}} < {A_n} < {1 \over {2n - 2}}.$$
4
IIT-JEE 1995
Subjective
+5
-0
Consider a square with vertices at $$(1,1), (-1,1), (-1,-1)$$ and $$(1, -1)$$. Let $$S$$ be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region $$S$$ and find its area.
EXAM MAP
Medical
NEET