NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

### IIT-JEE 1996

Subjective
Let $${A_n}$$ be the area bounded by the curve $$y = {\left( {\tan x} \right)^n}$$ and the
lines $$x=0,$$ $$y=0,$$ and $$x = {\pi \over 4}.$$ Prove that for $$n > 2,$$
$${A_n} + {A_{n - 2}} = {1 \over {n - 1}}$$ and deduce $${1 \over {2n + 2}} < {A_n} < {1 \over {2n - 2}}.$$

Solve it.
2

### IIT-JEE 1995

Subjective
Consider a square with vertices at $$(1,1), (-1,1), (-1,-1)$$ and $$(1, -1)$$. Let $$S$$ be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region $$S$$ and find its area.

$${{16\sqrt 2 - 20} \over 3}$$
3

### IIT-JEE 1995

Subjective
Evaluate the definite integral : $$\int\limits_{ - 1/\sqrt 3 }^{1/\sqrt 3 } {\left( {{{{x^4}} \over {1 - {x^4}}}} \right){{\cos }^{ - 1}}\left( {{{2x} \over {1 + {x^2}}}} \right)} dx$$\$

$${\pi \over {12}}\left[ {\pi + 3{{\log }_e}\left( {2 + \sqrt 3 } \right) - 4\sqrt 3 } \right]$$
4

### IIT-JEE 1995

Subjective
Let $${I_m} = \int\limits_0^\pi {{{1 - \cos mx} \over {1 - \cos x}}} dx.$$ Use mathematical induction to prove that $${I_m} = m\,\pi ,m = 0,1,2,........$$

Solve it.

### Joint Entrance Examination

JEE Main JEE Advanced WB JEE

### Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

NEET

Class 12