1
IIT-JEE 2001
Subjective
+5
-0
Let $$b \ne 0$$ and for $$j=0, 1, 2, ..., n,$$ let $${S_j}$$ be the area of
the region bounded by the $$y$$-axis and the curve $$x{e^{ay}} = \sin $$ by,
$${{jr} \over b} \le y \le {{\left( {j + 1} \right)\pi } \over b}.$$ Show that $${S_0},{S_1},{S_2},\,....,\,{S_n}$$ are in
geometric progression. Also, find their sum for $$a=-1$$ and $$b = \pi .$$
2
IIT-JEE 1999
Subjective
+10
-0
Let $$f(x)$$ be a continuous function given by $$$f\left( x \right) = \left\{ {\matrix{ {2x,} & {\left| x \right| \le 1} \cr {{x^2} + ax + b,} & {\left| x \right| > 1} \cr } } \right\}$$$

Find the area of the region in the third quadrant bounded by the curves $$x = - 2{y^2}$$ and $$y=f(x)$$ lying on the left of the line $$8x+1=0.$$

3
IIT-JEE 1997
Subjective
+5
-0
Let $$f(x)= Maximum $$ $$\,\left\{ {{x^2},{{\left( {1 - x} \right)}^2},2x\left( {1 - x} \right)} \right\},$$ where $$0 \le x \le 1.$$
Determine the area of the region bounded by the curves
$$y = f\left( x \right),$$ $$x$$-axes, $$x=0$$ and $$x=1.$$
4
IIT-JEE 1996
Subjective
+3
-0
Let $${A_n}$$ be the area bounded by the curve $$y = {\left( {\tan x} \right)^n}$$ and the
lines $$x=0,$$ $$y=0,$$ and $$x = {\pi \over 4}.$$ Prove that for $$n > 2,$$
$${A_n} + {A_{n - 2}} = {1 \over {n - 1}}$$ and deduce $${1 \over {2n + 2}} < {A_n} < {1 \over {2n - 2}}.$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12