1
IIT-JEE 2001
Subjective
+5
-0
Let $$b \ne 0$$ and for $$j=0, 1, 2, ..., n,$$ let $${S_j}$$ be the area of
the region bounded by the $$y$$-axis and the curve $$x{e^{ay}} = \sin$$ by,
$${{jr} \over b} \le y \le {{\left( {j + 1} \right)\pi } \over b}.$$ Show that $${S_0},{S_1},{S_2},\,....,\,{S_n}$$ are in
geometric progression. Also, find their sum for $$a=-1$$ and $$b = \pi .$$
2
IIT-JEE 2000
Subjective
+5
-0
For $$x>0,$$ let $$f\left( x \right) = \int\limits_e^x {{{\ln t} \over {1 + t}}dt.}$$ Find the function
$$f\left( x \right) + f\left( {{1 \over x}} \right)$$ and show that $$f\left( e \right) + f\left( {{1 \over e}} \right) = {1 \over 2}.$$
Here, $$\ln t = {\log _e}t$$.
3
IIT-JEE 1999
Subjective
+5
-0
Integrate $$\int\limits_0^\pi {{{{e^{\cos x}}} \over {{e^{\cos x}} + {e^{ - \cos x}}}}\,dx.}$$
4
IIT-JEE 1999
Subjective
+10
-0
Let $$f(x)$$ be a continuous function given by $$f\left( x \right) = \left\{ {\matrix{ {2x,} & {\left| x \right| \le 1} \cr {{x^2} + ax + b,} & {\left| x \right| > 1} \cr } } \right\}$$\$

Find the area of the region in the third quadrant bounded by the curves $$x = - 2{y^2}$$ and $$y=f(x)$$ lying on the left of the line $$8x+1=0.$$

EXAM MAP
Medical
NEET