1
IIT-JEE 1999
Subjective
+10
-0
Let $$ABC$$ be a triangle having $$O$$ and $$I$$ as its circumcenter and in centre respectively. If $$R$$ and $$r$$ are the circumradius and the inradius, respectively, then prove that $${\left( {IO} \right)^2} = {R^2} - 2{\mathop{\rm Rr}\nolimits} $$. Further show that the triangle BIO is a right-angled triangle if and only if $$b$$ is arithmetic mean of $$a$$ and $$c$$.
2
IIT-JEE 1998
Subjective
+8
-0
Prove that a triangle $$ABC$$ is equilateral if and only if $$\tan A + \tan B + \tan C = 3\sqrt 3 $$.
3
IIT-JEE 1998
Subjective
+8
-0
A bird flies in a circle on a horizontal plane. An observer stands at a point on the ground. Suppose $${60^ \circ }$$ and $${30^ \circ }$$ are the maximum and the minimum angles of elevation of the bird and that they occur when the bird is at the points $$P$$ and $$Q$$ respectively on its path. Let $$\theta $$ be the angle of elevation of the bird when it is a point on the are of the circle exactly midway between $$P$$ and $$Q$$. Find the numerical value of $${\tan ^2}\theta $$. (Assume that the observer is not inside the vertical projection of the path of the bird.)
4
IIT-JEE 1994
Subjective
+4
-0
A tower $$AB$$ leans towards west making an angle $$\alpha $$ with the vertical. The angular elevation of $$B$$, the topmost point of the tower is $$\beta $$ as observed from a point $$C$$ due west of $$A$$ at a distance $$d$$ from $$A$$. If the angular elevation of $$B$$ from a point $$D$$ due east of $$C$$ at a distance $$2d$$ from $$C$$ is $$\gamma $$, then prove that $$2$$ tan $$\alpha = - \cot \beta + \cot \gamma $$.
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12