1
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1

Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$

The area bounded by the curve $$y=f(x)$$ and the lines $$x=0,$$ $$y=0$$ and $$x=t,$$ lies in the interval

A
$$\left( {{3 \over 4},3} \right)$$
B
$$\left( {{{21} \over {64}},{{11} \over {16}}} \right)$$
C
$$\left( {9,10} \right)$$
D
$$\left( {0,{{21} \over {64}}} \right)$$
2
IIT-JEE 2009 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let $$f$$ be a non-negative function defined on the interval $$[0,1]$$.

If $$\int\limits_0^x {\sqrt {1 - {{(f'(t))}^2}dt} = \int\limits_0^x {f(t)dt,0 \le x \le 1} } $$, and $$f(0) = 0$$, then

A
$$f\left( {{1 \over 2}} \right) < {1 \over 2}$$ and $$f\left( {{1 \over 3}} \right) > {1 \over 3}$$
B
$$f\left( {{1 \over 2}} \right) > {1 \over 2}$$ and $$f\left( {{1 \over 3}} \right) > {1 \over 3}$$
C
$$f\left( {{1 \over 2}} \right) < {1 \over 2}$$ and $$f\left( {{1 \over 3}} \right) < {1 \over 3}$$
D
$$f\left( {{1 \over 2}} \right) > {1 \over 2}$$ and $$f\left( {{1 \over 3}} \right) < {1 \over 3}$$
3
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
The area of the region between the curves $$y = \sqrt {{{1 + \sin x} \over {\cos x}}} $$
and $$y = \sqrt {{{1 - \sin x} \over {\cos x}}} $$ bounded by the lines $$x=0$$ and $$x = {\pi \over 4}$$ is
A
$$\int\limits_0^{\sqrt 2 - 1} {{t \over {\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$
B
$$\int\limits_0^{\sqrt 2 - 1} {{4t \over {\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$
C
$$\int\limits_0^{\sqrt 2 + 1} {{4t \over {\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$
D
$$\int\limits_0^{\sqrt 2 + 1} {{t \over {\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$
4
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Consider the functions defined implicitly by the equation $$y^3-3y+x=0$$ on various intervals in the real line. If $$x\in(-\infty,-2)\cup(2,\infty)$$, the equation implicitly defines a unique real valued differentiable function $$y=f(x)$$. If $$x\in(-2,2)$$, the equation implicitly defines a unique real valued differentiable function $$y=g(x)$$ satisfying $$g(0)=0$$

The area of the region bounded by the curve $$y=f(x),$$ the
$$x$$-axis, and the lines $$x=a$$ and $$x=b$$, where $$ - \infty < a < b < - 2,$$ is :

A
$$\int\limits_a^b {{x \over {3\left( {{{(f(x))}^2} - 1} \right)}}} dx + bf\left( b \right) - af\left( a \right)$$
B
$$ - \int\limits_a^b {{x \over {3\left( {{{(f(x))}^2} - 1} \right)}}} dx + bf\left( b \right) - af\left( a \right)$$
C
$$\int\limits_a^b {{x \over {3\left( {{{(f(x))}^2} - 1} \right)}}} dx - bf\left( b \right) + af\left( a \right)$$
D
$$ - \int\limits_a^b {{x \over {3\left( {{{(f(x))}^2} - 1} \right)}}} dx - bf\left( b \right) + af\left( a \right)$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12