Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$
The area bounded by the curve $$y=f(x)$$ and the lines $$x=0,$$ $$y=0$$ and $$x=t,$$ lies in the interval
Let $$f$$ be a non-negative function defined on the interval $$[0,1]$$.
If $$\int\limits_0^x {\sqrt {1 - {{(f'(t))}^2}dt} = \int\limits_0^x {f(t)dt,0 \le x \le 1} } $$, and $$f(0) = 0$$, then
and $$y = \sqrt {{{1 - \sin x} \over {\cos x}}} $$ bounded by the lines $$x=0$$ and $$x = {\pi \over 4}$$ is
Consider the functions defined implicitly by the equation $$y^3-3y+x=0$$ on various intervals in the real line. If $$x\in(-\infty,-2)\cup(2,\infty)$$, the equation implicitly defines a unique real valued differentiable function $$y=f(x)$$. If $$x\in(-2,2)$$, the equation implicitly defines a unique real valued differentiable function $$y=g(x)$$ satisfying $$g(0)=0$$
The area of the region bounded by the curve $$y=f(x),$$ the
$$x$$-axis, and the lines $$x=a$$ and $$x=b$$, where $$ - \infty < a < b < - 2,$$ is :