1
GATE ECE 2003
MCQ (Single Correct Answer)
+2
-0.6
The electron concentration in a sample of uniformly doped n-type silicon at 300oK varies linearly from $$10^{17}/cm^3$$ at x = 0 to $$6\times10^{16}/cm^3$$ at x = 2 $$\mu m$$. Assume a situation that electrons are supplied to keep this concentration gradient constant with time.If electronic charge is $$1.6\times10^{-19}\;coulomb$$ and the diffusion constant $$D_n=3\;cm^2/s$$, the current density in the silicon, if no electric field is present is
2
GATE ECE 1992
MCQ (Single Correct Answer)
+2
-0.6
A semiconductor is irradiated with light such that carriers are uniformly
generated throughout its volume. The semiconductor is n-type with $$N_D=10^{19}/cm^3$$. If the excess electron concentration in the steady state id $$\triangle n=10^{15}/cm^3$$ and if $$\tau_p=10\;\mu\;sec$$ [minority carrier life time] the generation rate due to
irradiation
3
GATE ECE 1991
MCQ (Single Correct Answer)
+2
-0.6
A silicon sample is uniformly doped with 1016 phosphorous atoms/cm3 and 2 ×1016 boron atoms/cm3. If all the dopants are fully ionized, the material is
4
GATE ECE 1987
MCQ (More than One Correct Answer)
+2
-0
In an intrinsic semiconductor the free electron concentration depends on
Questions Asked from Semiconductor Physics (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics