1
GATE ECE 2003
MCQ (Single Correct Answer)
+2
-0.6
An n-type silicon bar 0.1 cm long and $$100\;\mu m^2$$ in cross-sectional area has a majority carrier concentration of $$5\times10^{20}/m^3$$ and the carrier mobility is $$0.13\;\;m^2/v-s\;$$ at 300oK. if the charge of an electron is 1.6×10-19 coulomb, then the resistance of the bar is
A
$$10^6\;\Omega$$
B
$$10^4\;\Omega$$
C
$$10^{-1}\;\Omega$$
D
$$10^{-4}\;\Omega$$
2
GATE ECE 1992
MCQ (Single Correct Answer)
+2
-0.6
A semiconductor is irradiated with light such that carriers are uniformly generated throughout its volume. The semiconductor is n-type with $$N_D=10^{19}/cm^3$$. If the excess electron concentration in the steady state id $$\triangle n=10^{15}/cm^3$$ and if $$\tau_p=10\;\mu\;sec$$ [minority carrier life time] the generation rate due to irradiation
A
$$is\;10^{20}\;e-h\;pairs/cm^3/sec$$
B
$$is\;10^{24}\;e-h\;pairs/cm^3/sec$$
C
$$is\;10^{10}\;e-h\;pairs/cm^3/sec$$
D
cannot be determined as the given data is insufficient
3
GATE ECE 1991
MCQ (Single Correct Answer)
+2
-0.6
A silicon sample is uniformly doped with 1016 phosphorous atoms/cm3 and 2 ×1016 boron atoms/cm3. If all the dopants are fully ionized, the material is
A
n-type with carrier concentration of 1016/cm3
B
p-type with carrier concentration of 1016/cm3
C
p-type with carrier concentration of 2 ×1016/cm3
D
n-type with carrier concentration of 2 ×1016/cm3
4
GATE ECE 1987
MCQ (More than One Correct Answer)
+2
-0.6
In an intrinsic semiconductor the free electron concentration depends on
A
Effective mass of electrons only.
B
Effective mass of holes only.
C
Temperature of the Semiconductor.
D
Width of the forbidden energy band of the semiconductor.
GATE ECE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12