1
GATE ECE 2014 Set 3
Numerical
+2
-0
Let $${X_1},\,{X_2},$$ and $${X_3}$$ be independent and identically distributed random variables with the uniform distribution on $$\left[ {0,\,1} \right]$$. The probability $$P\left\{ {{X_1} + {X_2} \le {X_3}} \right\}$$ is ___________ .
2
GATE ECE 2014 Set 2
Numerical
+2
-0
The power spectral density of a real stationary random process X(t) is given by $${S_x}\left( f \right) = \left\{ {\matrix{ {{1 \over W},\left| f \right| \le W} \cr {0,\left| f \right| > W} \cr } } \right.$$$The value of the expectation $$E\left[ {\pi X\left( t \right)X\left( {t - {1 \over {4W}}} \right)} \right]$$$
is ---------------.

3
GATE ECE 2014 Set 1
+2
-0.6
Consider a random process $$X\left( t \right) = \sqrt 2 \sin \left( {2\pi t + \varphi } \right),$$ where the random phase $$\varphi$$ is uniformly distributed in the interval $$\left[ {0,\,\,2\pi } \right].$$ The auto - correlation $$E\left[ {X\left( {{t_1}} \right)X\left( {{t_2}} \right)} \right]$$ is
A
$$\cos \left( {2\pi \left( {{t_1} + {t_2}} \right)} \right)$$
B
$$\sin \left( {2\pi \left( {{t_1} - {t_2}} \right)} \right)$$
C
$$\sin \left( {2\pi \left( {{t_1} + {t_2}} \right)} \right)$$
D
$$\cos \left( {2\pi \left( {{t_1} - {t_2}} \right)} \right)$$
4
GATE ECE 2014 Set 1
Numerical
+2
-0
Let $$Q\left( {\sqrt y } \right)$$ be the BER of a BPSK system over an AWGN channel with two - sided noise power spectral density N0/2. The parameter 𝛾 is a function of bit energy and noise power spectral density. A system with two independent and identical AWGN channels with noise power spectral density N0/2 is shown in the figure. The BPSK demodulator receives the sum of outputs of both the channels

If the BER of this system is $$Q\left( {b\sqrt y } \right),$$ then the value of b is -----------.