1
GATE ECE 2017 Set 2
Numerical
+2
-0
In the voltage reference circuit shown in the figure, the op-amp is ideal and the transistors Q1,
Q2,….., Q32 are identical in all respects and have infinitely large values of common – emitter
current gain $$\beta $$. The collector current (IC) of the transistors is related to their base emitter voltage (VBE) by the relation IC = IS exp (VBE/VT); where Is is the saturation current. Assume that the
voltage VP shown in the figure is 0.7 V and the thermal voltage VT=26mV
The output voltage Vout (in volts) is _____.
Your input ____
2
GATE ECE 2017 Set 1
Numerical
+2
-0
The amplifier circuit shown in the figure is
implemented using a compensated operational
amplifier (op-amp), and has an open-loop voltage
gain, A0 105 V/V and an open-loop cut-off frequency, fC = 8 Hz. The voltage gain of the amplifier
at 15 kHz, in V/V, is __________.
Your input ____
3
GATE ECE 2016 Set 1
Numerical
+2
-0
A p-i-n photo diode of responsivity 0.8A/W is connected to the inverting input of an ideal opamp as shown in the figure, +VCC = 15V, - VCC = -15V, Load resistor RL = 10 k$$\Omega $$ . If 10$$\mu $$W of power is incident on the photodiode, then the value of the photocurrent (in $$\mu $$A) through the load is _____.
Your input ____
4
GATE ECE 2016 Set 1
Numerical
+2
-0
An ideal opamp has voltage source V1, V3, V5, ......, VN-1, connected to the non- inverting input and V2, V4, V6, .....VN connected to the inverting input as shown in the figure below (+VCC= 15 volt, -VCC = -15 volt). The voltage V1, V2, V3,V4, V5, V6 ....... are 1, -1/2, 1/3, -1/4, 1/5, -1/6, .... volt, respectively. As N approaches infinity, the output voltage (in volt) is _______
Your input ____
Questions Asked from Operational Amplifier (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2024 (2)
GATE ECE 2023 (2)
GATE ECE 2022 (1)
GATE ECE 2017 Set 2 (1)
GATE ECE 2017 Set 1 (1)
GATE ECE 2016 Set 1 (2)
GATE ECE 2016 Set 3 (1)
GATE ECE 2016 Set 2 (2)
GATE ECE 2015 Set 3 (1)
GATE ECE 2015 Set 2 (2)
GATE ECE 2015 Set 1 (2)
GATE ECE 2014 Set 1 (2)
GATE ECE 2014 Set 3 (1)
GATE ECE 2013 (1)
GATE ECE 2012 (1)
GATE ECE 2008 (3)
GATE ECE 2007 (4)
GATE ECE 2006 (1)
GATE ECE 2005 (4)
GATE ECE 2004 (1)
GATE ECE 2003 (3)
GATE ECE 2001 (3)
GATE ECE 2000 (1)
GATE ECE 1997 (1)
GATE ECE 1993 (1)
GATE ECE 1992 (3)
GATE ECE 1990 (3)
GATE ECE 1989 (1)
GATE ECE 1988 (1)
GATE ECE 1987 (1)
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Communications
Electromagnetics
General Aptitude