1
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
In the circuit shown below the op-amps are ideal. Then Vout in Volts is
2
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
The circuit shown is a
3
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
Consider the following circuit using an ideal Op-Amp. The I-V characteristics of the diode is described by the relation
$$$I = {I_0}\left[ {{e^{{V \over {VT}}}} - 1} \right], where \,{V_T}\,\, = \,\,25mV,{I_0}\,\, = 1 \mu {\rm A}$$$
and V is the voltage across the diode (taken as positive for forward bias). For an input voltage $${V_i}\,\, = \,\, - 1V,$$ the output voltage V0 is
4
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
The Op-Amp circuit shown above represents a
Questions Asked from Operational Amplifier (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2024 (2)
GATE ECE 2023 (2)
GATE ECE 2022 (1)
GATE ECE 2017 Set 2 (1)
GATE ECE 2017 Set 1 (1)
GATE ECE 2016 Set 1 (2)
GATE ECE 2016 Set 3 (1)
GATE ECE 2016 Set 2 (2)
GATE ECE 2015 Set 3 (1)
GATE ECE 2015 Set 2 (2)
GATE ECE 2015 Set 1 (2)
GATE ECE 2014 Set 1 (2)
GATE ECE 2014 Set 3 (1)
GATE ECE 2013 (1)
GATE ECE 2012 (1)
GATE ECE 2008 (3)
GATE ECE 2007 (4)
GATE ECE 2006 (1)
GATE ECE 2005 (4)
GATE ECE 2004 (1)
GATE ECE 2003 (3)
GATE ECE 2001 (3)
GATE ECE 2000 (1)
GATE ECE 1997 (1)
GATE ECE 1993 (1)
GATE ECE 1992 (3)
GATE ECE 1990 (3)
GATE ECE 1989 (1)
GATE ECE 1988 (1)
GATE ECE 1987 (1)
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Communications
Electromagnetics
General Aptitude