1
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
A plane wave having the electric field component $$${\overrightarrow E _i} = 24\,\,\cos \,\,\left( {3 \times {{10}^8}\,t - \beta \,y} \right){\widehat a_z}\,\,V/m$$$
and traveling in free space is incident normally on a lossless medium with $$\mu = {\mu _0}$$ and $$\varepsilon = 9\,\,{\varepsilon _0},$$ which occupies the region $$y \ge 0.$$ The reflected magnetic field component is given by
A
$${1 \over {10{\mkern 1mu} \pi }}\cos {\mkern 1mu} {\mkern 1mu} \left( {3 \times {{10}^8}{\mkern 1mu} t - y} \right)\hat a{\,_x}{\mkern 1mu} {\mkern 1mu} A/m$$
B
$${1 \over {20{\mkern 1mu} \pi }}\cos {\mkern 1mu} {\mkern 1mu} \left( {3 \times {{10}^8}{\mkern 1mu} t - y} \right)\hat a{\,_x}{\mkern 1mu} {\mkern 1mu} A/m$$
C
$$ - {1 \over {20{\mkern 1mu} \pi }}\cos {\mkern 1mu} {\mkern 1mu} \left( {3 \times {{10}^8}{\mkern 1mu} t - y} \right)\hat a{\,_x}{\mkern 1mu} {\mkern 1mu} A/m$$
D
$$ - {1 \over {10{\mkern 1mu} \pi }}\cos {\mkern 1mu} {\mkern 1mu} \left( {3 \times {{10}^8}{\mkern 1mu} t - y} \right)\hat a{\,_x}{\mkern 1mu} {\mkern 1mu} A/m$$
2
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
A uniform plane wave in the free space is normally incident on an infinitely thick dielectric slab (dielectric constant $${\varepsilon _r} = 9$$ ). The magnitude of the reflection coefficient is
A
$$0$$
B
$$0.3$$
C
$$0.5$$
D
$$0.8$$
3
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The $$\overrightarrow H $$ field (in A/m) of a plane wave propagating in free space is given by $$$\overrightarrow H = \widehat x{{5\sqrt 3 } \over {{\eta _0}}}\cos \left( {\omega \,t - \beta \,z} \right) + \widehat y{5 \over {{\eta _0}}}\sin \left( {\omega \,t - \beta \,z + {\pi \over 2}} \right)$$$

The time average power flow density in Watts is

A
$${{{\eta _0}} \over {100}}$$
B
$${{100} \over {{\eta _0}}}$$
C
$$50\,{\eta _0}^2$$
D
$${{50} \over {{\eta _0}}}$$
4
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
A medium of relative permittivityb $${\varepsilon _r} = 2$$ forms an interface with free-space. A point source of electromagnetic energy is located in the medium at a depth of $$1$$ meter from the interface. Due to the total internal reflection, the transmitted beam has a circular cross-section over the interface. The area of the beam cross-section at the interface is given by
A
$$2\pi \,{m^2}$$
B
$${\pi ^2}\,{m^2}$$
C
$$\pi /2\,{m^2}$$
D
$$\pi \,{m^2}$$
GATE ECE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12