1
GATE ECE 2011
MCQ (Single Correct Answer)
+2
-0.6
The electric and magnetic fields for a TEM wave of frequency $$14 GHz$$ in a homogeneous medium of relative permittivity $${\varepsilon _r}$$ and relative permeability $${\mu _r} = 1$$ are given by
$$$\overrightarrow E = {E_p}\,\,{e^{j\left( {\omega t - 280\pi y} \right)}}\,\,{\widehat u_z}\,\,V/m$$$
$$$\overrightarrow H = \,\,3\,\,{e^{j\left( {\omega \,t - 280\,\,\pi \,y} \right)}}\,\,\widehat u{\,_x}\,\,A/m$$$
Assuming the speed of light in free space to be $$3\,\, \times {10^8}\,\,\,m/s,$$ the intrinsic impedance of free space to be $$120\,\,\,\pi $$, the relative permittivity $${\varepsilon _r}$$ of the medium and the electric field amplitude $${E_p}$$ are
2
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
A plane wave having the electric field component
$$${\overrightarrow E _i} = 24\,\,\cos \,\,\left( {3 \times {{10}^8}\,t - \beta \,y} \right){\widehat a_z}\,\,V/m$$$
and traveling in free space is incident normally on a lossless medium with $$\mu = {\mu _0}$$ and $$\varepsilon = 9\,\,{\varepsilon _0},$$ which occupies the region $$y \ge 0.$$ The reflected magnetic field component is given by
and traveling in free space is incident normally on a lossless medium with $$\mu = {\mu _0}$$ and $$\varepsilon = 9\,\,{\varepsilon _0},$$ which occupies the region $$y \ge 0.$$ The reflected magnetic field component is given by
3
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
A uniform plane wave in the free space is normally incident on an infinitely thick dielectric slab (dielectric constant $${\varepsilon _r} = 9$$ ). The magnitude of the reflection coefficient is
4
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The $$\overrightarrow H $$ field (in A/m) of a plane wave propagating in free space is given by
$$$\overrightarrow H = \widehat x{{5\sqrt 3 } \over {{\eta _0}}}\cos \left( {\omega \,t - \beta \,z} \right) + \widehat y{5 \over {{\eta _0}}}\sin \left( {\omega \,t - \beta \,z + {\pi \over 2}} \right)$$$
The time average power flow density in Watts is
Questions Asked from Uniform Plane Waves (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2024 (1)
GATE ECE 2023 (2)
GATE ECE 2017 Set 1 (1)
GATE ECE 2016 Set 1 (1)
GATE ECE 2015 Set 2 (1)
GATE ECE 2015 Set 1 (2)
GATE ECE 2014 Set 3 (2)
GATE ECE 2014 Set 2 (1)
GATE ECE 2014 Set 1 (1)
GATE ECE 2013 (2)
GATE ECE 2011 (1)
GATE ECE 2010 (1)
GATE ECE 2008 (1)
GATE ECE 2007 (1)
GATE ECE 2006 (3)
GATE ECE 2004 (1)
GATE ECE 2003 (3)
GATE ECE 2002 (2)
GATE ECE 2001 (1)
GATE ECE 2000 (1)
GATE ECE 1996 (2)
GATE ECE 1993 (2)
GATE ECE 1991 (1)
GATE ECE 1989 (1)
GATE ECE 1988 (1)
GATE ECE 1987 (1)
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics