1
GATE ECE 2023
MCQ (More than One Correct Answer)
+2
-0

The electric field of a plane electromagnetic wave is

$$E = {a_x}{C_{1x}}\cos (\omega t - \beta z) + {a_y}{C_{1y}}\cos (\omega t - \beta z + \theta )$$ V/m.

Which of the following combination(s) will give rise to a left handed elliptically polarized (LHEP) wave?

A
$${C_{1x}} = 1,{C_{1y}} = 1,\theta = \pi /4$$
B
$${C_{1x}} = 2,{C_{1y}} = 1,\theta = \pi /2$$
C
$${C_{1x}} = 1,{C_{1y}} = 2,\theta = 3\pi /2$$
D
$${C_{1x}} = 2,{C_{1y}} = 1,\theta = 3\pi /4$$
2
GATE ECE 2023
Numerical
+2
-0

A transparent dielectric coating is applied to glass ($$\varepsilon _r=4,\mu_r=1$$) to eliminate the reflection of red light ($$\lambda_0=0.75~\mu\mathrm{m}$$). The minimum thickness of the dielectric coating, in $$\mu\mathrm{m}$$, that can be used is __________ (rounded off to two decimal places).

Your input ____
3
GATE ECE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The expression for an electric field in free space is $$E = {E_0}\left( {\widehat x + \widehat y + j2\widehat z} \right){e^{ - j\left( {\omega t - kx + ky} \right)}},$$ where $$x,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} y,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} z\,\,\,\,\,\,\,$$ represent the spatial coordinates, $$t$$ represents time, and $$\omega ,\,\,k$$ are contants. This electric field
A
does not represent a plane wave.
B
represents a circular polarized plane wave propagating normal to the z-axis.
C
represents an elliptically polarized plane wave propagating along x-y plane.
D
represents a linearly polarized plane wave
4
GATE ECE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The electric field of a uniform plane wave travelling along the negative $$z$$ direction is given by the following equation: $$$\overrightarrow E {}_w^i = \left( {{{\widehat a}_{_x}} + j{{\widehat a}_{_y}}} \right){E_0}{e^{jkz}}$$$

This wave is incident upon a receiving antenna placed at the origin and whose radiated electric field towards the incident wave is given by the following equation:

$$${\overrightarrow E _{_a}} = \left( {{{\widehat a}_{_x}} + 2{{\widehat a}_{_y}}} \right){E_1}{1 \over r}{e^{ - jkr}}$$$

The polarization of the incident wave, the polarization of the antenna and losses due to the polarization mismatch are, respectively,

A
Linear, Circular (clockwise), $$−5dB$$
B
Circular (clockwise), Linear, $$−5dB$$
C
Circular (clockwise), Linear, $$−3dB$$
D
Circular (anti clockwise), Linear, $$−3dB$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12